RESUMO
BACKGROUND: PI3K signaling is frequently activated in breast cancer and is targeted by PI3K inhibitors. However, resistance of tumor cells to PI3K inhibition, often mediated by activated receptor tyrosine kinases, is commonly observed and reduces the potency of PI3K inhibitors. Therefore, new treatment strategies to overcome resistance to PI3K inhibitors are urgently needed to boost their efficacy. The phosphatase SHP2, which plays a crucial role in mediating signal transduction between receptor tyrosine kinases and both the PI3K and MAPK pathways, is a potential target for combination treatment. METHODS: We tested combinations of PI3K and SHP2 inhibitors in several experimental breast cancer models that are resistant to PI3K inhibition. Using cell culturing, biochemical and genetic approaches, we evaluated tumor cell proliferation and signaling output in cells treated with PI3K and SHP2 inhibitors. RESULTS: Combination treatment with PI3K and SHP2 inhibitors counteracted both acquired and intrinsic breast cancer cell resistance to PI3K inhibition that is mediated by activated receptor tyrosine kinases. Dual PI3K and SHP2 inhibition blocked proliferation and led to sustained inactivation of PI3K and MAPK signaling, where resistant cells rapidly re-activated these pathways upon PI3K inhibitor monotreatment. In addition, we demonstrate that overexpression of SHP2 induced resistance to PI3K inhibition, and that SHP2 was frequently activated during the development of PI3K inhibitor resistance after prolonged treatment of sensitive cells. CONCLUSIONS: Our results highlight the importance of SHP2 as a player in resistance to PI3K inhibitors. Combination treatment with PI3K and SHP2 inhibitors could pave the way for significant improvements in therapies for breast cancer.
Assuntos
Neoplasias da Mama , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Humanos , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Transdução de SinaisRESUMO
Myelination depends on the synthesis of large amounts of myelin transcripts and proteins and is controlled by Nrg1/ErbB/Shp2 signaling. We developed a novel pulse labeling strategy based on stable isotope labeling with amino acids in cell culture (SILAC) to measure the dynamics of myelin protein production in mice. We found that protein synthesis is dampened in the maturing postnatal peripheral nervous system, and myelination then slows down. Remarkably, sustained activation of MAPK signaling by expression of the Mek1DD allele in mice overcomes the signals that end myelination, resulting in continuous myelin growth. MAPK activation leads to minor changes in transcript levels but massively up-regulates protein production. Pharmacological interference in vivo demonstrates that the effects of activated MAPK signaling on translation are mediated by mTOR-independent mechanisms but in part also by mTOR-dependent mechanisms. Previous work demonstrated that loss of ErbB3/Shp2 signaling impairs Schwann cell development and disrupts the myelination program. We found that activated MAPK signaling strikingly compensates for the absence of ErbB3 or Shp2 during Schwann cell development and myelination.
Assuntos
Diferenciação Celular , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Bainha de Mielina/metabolismo , Neuregulina-1/metabolismo , Receptor ErbB-3/metabolismo , Células de Schwann/citologia , Alelos , Animais , Regulação da Expressão Gênica/genética , MAP Quinase Quinase 1/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Microscopia Eletrônica de Transmissão , Complexos Multiproteicos , Mutação , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Receptor ErbB-3/genética , Células de Schwann/ultraestrutura , Transdução de Sinais , Serina-Treonina Quinases TORRESUMO
Severe congenital neutropenia (SCN) is a monogenic disorder. SCN patients are prone to recurrent life-threatening infections. The main causes of SCN are autosomal dominant mutations in the ELANE gene that lead to a block in neutrophil differentiation. In this study, we use CRISPR-Cas9 ribonucleoproteins and adeno-associated virus (AAV)6 as a donor template delivery system to repair the ELANEL172P mutation in SCN patient-derived hematopoietic stem and progenitor cells (HSPCs). We used a single guide RNA (sgRNA) specifically targeting the mutant allele, and an sgRNA targeting exon 4 of ELANE. Using the latter sgRNA, â¼34% of the known ELANE mutations can in principle be repaired. We achieved gene correction efficiencies of up to 40% (with sgELANE-ex4) and 56% (with sgELANE-L172P) in the SCN patient-derived HSPCs. Gene repair restored neutrophil differentiation in vitro and in vivo upon HSPC transplantation into humanized mice. Mature edited neutrophils expressed normal elastase levels and behaved normally in functional assays. Thus, we provide a proof of principle for using CRISPR-Cas9 to correct ELANE mutations in patient-derived HSPCs, which may translate into gene therapy for SCN.
Assuntos
Sistemas CRISPR-Cas/genética , Síndrome Congênita de Insuficiência da Medula Óssea/terapia , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Elastase de Leucócito/genética , Mutação , Neutropenia/congênito , Alelos , Animais , Diferenciação Celular/genética , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Éxons , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células HEK293 , Humanos , Interleucina-3/genética , Interleucina-3/metabolismo , Camundongos , Camundongos Transgênicos , Neutropenia/genética , Neutropenia/patologia , Neutropenia/terapia , Neutrófilos/metabolismo , RNA Guia de Cinetoplastídeos/genética , Transfecção , Resultado do TratamentoRESUMO
BACKGROUND: Non-coding RNAs and especially microRNAs have been discovered to act as master regulators of cancer initiation and progression. The aim of our study was to discover and characterize the function of yet functionally uncharacterized microRNAs in human breast carcinogenesis. METHODS: In an unbiased approach, we utilized an established model system for breast cancer (BC) stem cell formation ("mammosphere assay") to identify whole miRNome alterations in breast carcinogenesis. Clinical samples of BC patients were used to evaluate the human relevance of the newly identified miRNA candidates. One promising candidate, miR-1287-5p, was further explored on its impact on several hallmarks of cancer. The molecular mode of action was characterized by whole transcriptome analysis, in silico prediction tools, miRNA-interaction assays, pheno-copy assays, and drug sensitivity assays. RESULTS: Among several other microRNAs, miR-1287-5p was significantly downregulated in mammospheres and human BC tissue compared to normal breast tissue (p < 0.0001). Low expression levels were significantly associated with poor prognosis in BC patients. MiR-1287-5p significantly decreased cellular growth, cells in S phase of cell cycle, anchorage-independent growth, and tumor formation in vivo. In addition, we identified PIK3CB as a direct molecular interactor of miR-1287-5p and a novel prognostic factor in BC. Finally, PI3Kinase pathway chemical inhibitors combined with miR-1287-5p mimic increased the pharmacological growth inhibitory potential in triple negative BC cells. CONCLUSION: Our data identified for the first time the involvement of miR-1287-5p in human BC and suggest a potential for therapeutic interventions in difficult to treat triple negative BC.
Assuntos
Carcinogênese/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Animais , Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Análise de Sobrevida , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
In this study, we have used techniques from cell biology, biochemistry, and genetics to investigate the role of the tyrosine phosphatase Shp2 in tumor cells of MMTV-PyMT mouse mammary glands. Genetic ablation or pharmacological inhibition of Shp2 induces senescence, as determined by the activation of senescence-associated ß-gal (SA-ß-gal), cyclin-dependent kinase inhibitor 1B (p27), p53, and histone 3 trimethylated lysine 9 (H3K9me3). Senescence induction leads to the inhibition of self-renewal of tumor cells and blockage of tumor formation and growth. A signaling cascade was identified that acts downstream of Shp2 to counter senescence: Src, focal adhesion kinase, and Map kinase inhibit senescence by activating the expression of S-phase kinase-associated protein 2 (Skp2), Aurora kinase A (Aurka), and the Notch ligand Delta-like 1 (Dll1), which block p27 and p53. Remarkably, the expression of Shp2 and of selected target genes predicts human breast cancer outcome. We conclude that therapies, which rely on senescence induction by inhibiting Shp2 or controlling its target gene products, may be useful in blocking breast cancer.
Assuntos
Senescência Celular , Neoplasias Mamárias Animais/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Proteínas de Ligação ao Cálcio , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Feminino , Histonas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Metilação , Camundongos , Camundongos Transgênicos , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
The protease ß-secretase 1 (Bace1) was identified through its critical role in production of amyloid-ß peptides (Aß), the major component of amyloid plaques in Alzheimer's disease. Bace1 is considered a promising target for the treatment of this pathology, but processes additional substrates, among them Neuregulin-1 (Nrg1). Our biochemical analysis indicates that Bace1 processes the Ig-containing ß1 Nrg1 (IgNrg1ß1) isoform. We find that a graded reduction in IgNrg1 signal strength in vivo results in increasingly severe deficits in formation and maturation of muscle spindles, a proprioceptive organ critical for muscle coordination. Further, we show that Bace1 is required for formation and maturation of the muscle spindle. Finally, pharmacological inhibition and conditional mutagenesis in adult animals demonstrate that Bace1 and Nrg1 are essential to sustain muscle spindles and to maintain motor coordination. Our results assign to Bace1 a role in the control of coordinated movement through its regulation of muscle spindle physiology, and implicate IgNrg1-dependent processing as a molecular mechanism.
Assuntos
Secretases da Proteína Precursora do Amiloide/fisiologia , Ácido Aspártico Endopeptidases/fisiologia , Fusos Musculares/crescimento & desenvolvimento , Fusos Musculares/fisiologia , Neuregulina-1/fisiologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/deficiência , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/deficiência , Ácido Aspártico Endopeptidases/genética , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Fusos Musculares/efeitos dos fármacos , Neuregulina-1/deficiência , Neuregulina-1/genética , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Inibidores de Proteases/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional , Desempenho Psicomotor/fisiologia , Pirimidinas/farmacologia , Transdução de Sinais , Tiazinas/farmacologiaRESUMO
OBJECTIVES: We have previously identified a 115-gene signature that characterises the metastatic potential of human primary colon cancers. The signature included the canonical Wnt target gene BAMBI, which promoted experimental metastasis in mice. Here, we identified three new direct Wnt target genes from the signature, and studied their functions in epithelial-mesenchymal transition (EMT), cell migration and experimental metastasis. DESIGN: We examined experimental liver metastases following injection of selected tumour cells into spleens of NOD/SCID mice. Molecular and cellular techniques were used to identify direct transcription target genes of Wnt/ß-catenin signals. Microarray analyses and experiments that interfered with cell migration through inhibitors were performed to characterise downstream signalling systems. RESULTS: Three new genes from the colorectal cancer (CRC) metastasis signature, BOP1, CKS2 and NFIL3, were identified as direct transcription targets of ß-catenin/TCF4. Overexpression and knocking down of these genes in CRC cells promoted and inhibited, respectively, experimental metastasis in mice, EMT and cell motility in culture. Cell migration was repressed by interfering with distinct signalling systems through inhibitors of PI3K, JNK, p38 mitogen-activated protein kinase and/or mTOR. Gene expression profiling identified a series of migration-promoting genes, which were induced by BOP1, CKS2 and NFIL3, and could be repressed by inhibitors that are specific to these pathways. CONCLUSIONS: We identified new direct Wnt/ß-catenin target genes, BOP1, CKS2 and NFIL3, which induced EMT, cell migration and experimental metastasis of CRC cells. These genes crosstalk with different downstream signalling systems, and activate migration-promoting genes. These pathways and downstream genes may serve as therapeutic targets in the treatment of CRC metastasis.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Movimento Celular/genética , Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Hepáticas , Proteínas Nucleares/genética , Via de Sinalização Wnt/genética , Animais , Quinases relacionadas a CDC2 e CDC28 , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas Experimentais , Camundongos , Metástase Neoplásica , Proteínas de Ligação a RNA , Células Tumorais CultivadasRESUMO
Patient-derived xenograft (PDX) models have shown to reflect original patient tumors better than any other preclinical model. We embarked in a study establishing a large panel of head and neck squamous cell carcinomas PDX for biomarker analysis and evaluation of established and novel compounds. Out of 115 transplanted specimens 52 models were established of which 29 were characterized for response to docetaxel, cetuximab, methotrexate, carboplatin, 5-fluorouracil and everolimus. Further, tumors were subjected to sequencing analysis and gene expression profiling of selected mTOR pathway members. Most frequent response was observed for docetaxel and cetuximab. Responses to carboplatin, 5-fluorouracil and methotrexate were moderate. Everolimus revealed activity in the majority of PDX. Mutational profiling and gene expression analysis did not reveal a predictive biomarker for everolimus even though by trend RPS6KB1 mRNA expression was associated with response. In conclusion we demonstrate a comprehensively characterized panel of head and neck cancer PDX models, which represent a valuable and renewable tissue resource for evaluation of novel compounds and associated biomarkers.
Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Sirolimo/análogos & derivados , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/virologia , Análise Mutacional de DNA , Everolimo , Feminino , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/virologia , Papillomavirus Humano 16/fisiologia , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Pessoa de Meia-Idade , Infecções por Papillomavirus/virologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/genética , Resultado do TratamentoRESUMO
Humanized mice were generated in order to investigate the anti-tumor efficacy of bispecific antibodies. The engraftment, distribution and differentiation of mononuclear cells (MNC) from cord blood transplanted into the liver of newborn non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice were measured. Using a human-specific polymerase chain reaction (PCR), human cells were found to be present in the liver for a time range from 5 min to 5 days. After long-term engraftment of 42 days, the highest level of human cells was measured in mouse thymus, with lower levels in spleen and bone marrow. Engrafted human cells in mouse organs showed T-cell differentiation only, as measured by CD3, CD4 and CD8 expression. The MNC transplanted intrahepatically into newborn mice were tested for T-cell mediated anti-tumor activity in vivo against subcutaneously transplanted human SW480 colon carcinoma in NOD/SCID mice. A delay of SW480 tumor growth in mice in the presence of a bispecific epithelial cell-adhesion molecule (EpCAM)/CD3 antibody was found to be associated with the presence of immunoreactive human CD3 cells within the SW480 tumor. Our data provide evidence that the intrahepatic transplantation of cord blood stem cells into newborn mice represents a valuable model for establishing functionally active human T cells with anti-tumor activity.
Assuntos
Anticorpos Biespecíficos/imunologia , Antígenos de Neoplasias/imunologia , Complexo CD3/imunologia , Moléculas de Adesão Celular/imunologia , Neoplasias do Colo/patologia , Sangue Fetal/citologia , Sangue Fetal/transplante , Fígado/citologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/imunologia , Molécula de Adesão da Célula Epitelial , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/transplante , Camundongos , Camundongos Endogâmicos NOD , Especificidade de Órgãos , Fatores de Tempo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
In cancer research, availability of clinically relevant tumor models is still essential for drug testing, proof of concept studies, and also molecular analyses. To achieve this, models are of advantage, which more closely reflect heterogeneity of tumors. In this regard, patient-derived xenograft (PDX) models more closely recapitulate the native tumor biology, tissue composition, and molecular characteristics. Since metastasis is still the major challenge of tumor therapy, models are pivotal, which resemble this particular property. In this context, PDX model-derived metastasis is of particular interest for testing antimetastatic therapies for their efficacy to better target this systemic disease. This protocol describes the establishment of PDX models from tumor specimen and their applicability for PDX-derived metastasis at metastatic sites such as liver and lung, which are also clinically relevant for the systemic spread of cancer. Analysis of metastasis and methods for quantification of metastatic spread are provided.
Assuntos
Medicina de Precisão/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Neoplasias da Mama/patologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Cultura Primária de Células/métodos , Preservação de Tecido/métodos , Células Tumorais CultivadasRESUMO
Patient-derived xenograft (PDX) tumor models represent a valuable platform for identifying new biomarkers and novel targets, to evaluate therapy response and resistance mechanisms. This study aimed at establishment, characterization and therapy testing of colorectal carcinoma-derived PDX. We generated 49 PDX and validated identity between patient tumor and corresponding PDX. Sensitivity of PDX toward conventional and targeted drugs revealed that 92% of PDX responded toward irinotecan, 45% toward 5-FU, 65% toward bevacizumab, and 61% toward cetuximab. Expression of epidermal growth factor receptor (EGFR) ligands correlated to the sensitivity toward cetuximab. Proto-oncogene B-RAF, EGFR, Kirsten rat sarcoma virus oncogene homolog gene copy number correlated positively with cetuximab and erlotinib sensitivity. The mutational analyses revealed an individual mutational profile of PDX and mainly identical profiles of PDX from primary tumor vs corresponding metastasis. Mutation in PIK3CA was a determinant of accelerated tumor doubling time. PDX with wildtype Kirsten rat sarcoma virus oncogene homolog, proto-oncogene B-RAF, and phosphatidylinositol-4,5-bisphosphate 3-kinaseM catalytic subunit alfa showed higher sensitivity toward cetuximab and erlotinib. To study the molecular mechanism of cetuximab resistance, cetuximab resistant PDX models were generated, and changes in HER2, HER3, betacellulin, transforming growth factor alfa were observed. Global proteome and phosphoproteome profiling showed a reduction in canonical EGFR-mediated signaling via PTPN11 (SHP2) and AKT1S1 (PRAS40) and an increase in anti-apoptotic signaling as a consequence of acquired cetuximab resistance. This demonstrates that PDX models provide a multitude of possibilities to identify and validate biomarkers, signaling pathways and resistance mechanisms for clinically relevant improvement in cancer therapy.
Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Xenoenxertos , Animais , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Variações do Número de Cópias de DNA , Resistencia a Medicamentos Antineoplásicos , Imunofluorescência , Perfilação da Expressão Gênica , Instabilidade Genômica , Humanos , Imuno-Histoquímica , Camundongos , Terapia de Alvo Molecular , Mutação , Medicina de Precisão/métodos , Proteoma , Proteômica , Proto-Oncogene Mas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
We describe hollow fiber-based three-dimensional (3D) dynamic perfusion bioreactor technology for embryonic stem cells (ESC) which is scalable for laboratory and potentially clinical translation applications. We added 2 more compartments to the typical 2-compartment devices, namely an additional media capillary compartment for countercurrent 'arteriovenous' flow and an oxygenation capillary compartment. Each capillary membrane compartment can be perfused independently. Interweaving the 3 capillary systems to form repetitive units allows bioreactor scalability by multiplying the capillary units and provides decentralized media perfusion while enhancing mass exchange and reducing gradient distances from decimeters to more physiologic lengths of <1 mm. The exterior of the resulting membrane network, the cell compartment, is used as a physically active scaffold for cell aggregation; adjusting intercapillary distances enables control of the size of cell aggregates. To demonstrate the technology, mouse ESC (mESC) were cultured in 8- or 800-ml cell compartment bioreactors. We were able to confirm the hypothesis that this bioreactor enables mESC expansion qualitatively comparable to that obtained with Petri dishes, but on a larger scale. To test this, we compared the growth of 129/SVEV mESC in static two-dimensional Petri dishes with that in 3D perfusion bioreactors. We then tested the feasibility of scaling up the culture. In an 800-ml prototype, we cultured approximately 5 x 10(9) cells, replacing up to 800 conventional 100-mm Petri dishes. Teratoma formation studies in mice confirmed protein expression and gene expression results with regard to maintaining 'stemness' markers during cell expansion.
Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Animais , Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Processos de Crescimento Celular/fisiologia , Células Cultivadas , Humanos , Camundongos , PerfusãoRESUMO
Current treatments for clear cell renal cell cancer (ccRCC) are insufficient because two-thirds of patients with metastases progress within two years. Here we report the identification and characterization of a cancer stem cell (CSC) population in ccRCC. CSCs are quantitatively correlated with tumor aggressiveness and metastasis. Transcriptional profiling and single cell sequencing reveal that these CSCs exhibit an activation of WNT and NOTCH signaling. A significant obstacle to the development of rational treatments has been the discrepancy between model systems and the in vivo situation of patients. To address this, we use CSCs to establish non-adherent sphere cultures, 3D tumor organoids, and xenografts. Treatment with WNT and NOTCH inhibitors blocks the proliferation and self-renewal of CSCs in sphere cultures and organoids, and impairs tumor growth in patient-derived xenografts in mice. These findings suggest that our approach is a promising route towards the development of personalized treatments for individual patients.
Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptores Notch/antagonistas & inibidores , Proteínas Wnt/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Rim/patologia , Neoplasias Renais/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Cultura Primária de Células , Pirimidinonas/farmacologia , RNA Interferente Pequeno/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única , Esferoides Celulares , Proteínas Wnt/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Wnt/ß-catenin signaling is crucial for intestinal carcinogenesis and the maintenance of intestinal cancer stem cells. Here we identify the histone methyltransferase Mll1 as a regulator of Wnt-driven intestinal cancer. Mll1 is highly expressed in Lgr5+ stem cells and human colon carcinomas with increased nuclear ß-catenin. High levels of MLL1 are associated with poor survival of colon cancer patients. The genetic ablation of Mll1 in mice prevents Wnt/ß-catenin-driven adenoma formation from Lgr5+ intestinal stem cells. Ablation of Mll1 decreases the self-renewal of human colon cancer spheres and halts tumor growth of xenografts. Mll1 controls the expression of stem cell genes including the Wnt/ß-catenin target gene Lgr5. Upon the loss of Mll1, histone methylation at the stem cell promoters switches from activating H3K4 tri-methylation to repressive H3K27 tri-methylation, indicating that Mll1 sustains stem cell gene expression by antagonizing gene silencing through polycomb repressive complex 2 (PRC2)-mediated H3K27 tri-methylation. Transcriptome profiling of Wnt-mutated intestinal tumor-initiating cells reveals that Mll1 regulates Gata4/6 transcription factors, known to sustain cancer stemness and to control goblet cell differentiation. Our results demonstrate that Mll1 is an essential epigenetic regulator of Wnt/ß-catenin-induced intestinal tumorigenesis and cancer stemness.
Assuntos
Carcinogênese/genética , Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Células-Tronco Neoplásicas/metabolismo , Via de Sinalização Wnt , Animais , Carcinogênese/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Histonas/metabolismo , Humanos , Intestinos/patologia , Lisina/metabolismo , Metilação , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Complexo Repressor Polycomb 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima/genética , Via de Sinalização Wnt/genética , beta Catenina/metabolismoRESUMO
Effects of angiotensin (Ang)-(1-7), an AngII metabolite, on bone marrow-derived hematopoietic cells were studied. We identified Ang-(1-7) to stimulate proliferation of human CD34(+) and mononuclear cells in vitro. Under in vivo conditions, we monitored proliferation and differentiation of human cord blood mononuclear cells in NOD/SCID mice. Ang-(1-7) stimulated differentially human cells in bone marrow and accumulated them in the spleen. The number of HLA-I(+) and CD34(+) cells in the bone marrow was increased 42-fold and 600-fold, respectively. These results indicate a decisive impact of Ang-(1-7) on hematopoiesis and its promising therapeutic potential in diseases requiring progenitor stimulation.
Assuntos
Angiotensina I/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Angiotensina I/administração & dosagem , Animais , Antígenos CD19/análise , Antígenos CD34/análise , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Antígeno CD11a/análise , Células Cultivadas , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Relação Dose-Resposta a Droga , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Citometria de Fluxo , Antígenos HLA-DR/análise , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Injeções Subcutâneas , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Antígenos CD15/análise , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fragmentos de Peptídeos/administração & dosagem , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo , Fatores de Tempo , Transplante HeterólogoRESUMO
We identified a regulatory system that acts downstream of Wnt/ß-catenin signaling in salivary gland and head and neck carcinomas. We show in a mouse tumor model of K14-Cre-induced Wnt/ß-catenin gain-of-function and Bmpr1a loss-of-function mutations that tumor-propagating cells exhibit increased Mll1 activity and genome-wide increased H3K4 tri-methylation at promoters. Null mutations of Mll1 in tumor mice and in xenotransplanted human head and neck tumors resulted in loss of self-renewal of tumor-propagating cells and in block of tumor formation but did not alter normal tissue homeostasis. CRISPR/Cas9 mutagenesis and pharmacological interference of Mll1 at sequences that inhibit essential protein-protein interactions or the SET enzyme active site also blocked the self-renewal of mouse and human tumor-propagating cells. Our work provides strong genetic evidence for a crucial role of Mll1 in solid tumors. Moreover, inhibitors targeting specific Mll1 interactions might offer additional directions for therapies to treat these aggressive tumors.
Assuntos
Epigênese Genética , Neoplasias de Cabeça e Pescoço/genética , Código das Histonas , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Neoplasias das Glândulas Salivares/genética , Via de Sinalização Wnt , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Domínio Catalítico , Células Cultivadas , Neoplasias de Cabeça e Pescoço/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Mutação com Perda de Função , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/metabolismo , Ligação Proteica , Neoplasias das Glândulas Salivares/metabolismo , beta Catenina/metabolismoRESUMO
Stem cell homing, engraftment and organ regeneration are controlled by cytokines, chemokines and cell-cell interactions. In this paper, cytokine effects on homing- and engraftment-related characteristics of CD34(+) cord blood cells were examined. Untreated CD34(+) cells were mainly in the G(0)/G(1) cell cycle phase, expressed adhesion receptors on a low level, were positive for vimentin, and negative for the epithelial marker cytokeratin 8/18. Treatment with stem cell factor (SCF) stimulated cell proliferation, increased the number of cells in S and G(2)/M cell cycle phase as well as the expression of adhesion receptors. The expression of cytokeratin 8/18 was increased and that of vimentin remained unchanged. Hepatocyte growth factor (HGF) did not stimulate cell proliferation and expression of adhesion receptors, but increased expression of cytokeratin 8/18. In NOD/SCID mice, kinetics of stem cell distribution revealed a fast elimination of human cells from blood. An increase in the number of engrafted cells was observed in different mouse organs in a time-dependent manner, preferentially in bone marrow, spleen and liver. Pretreatment with SCF resulted in reduction of long-term engraftment in bone marrow. HGF pretreatment of cord blood cells showed no significant effects on long-term engraftment capacity in mouse organs compared to untreated cells. Our data provide in vivo evidence that pretreatment of CD34(+) cells with SCF reduces long-term cell engraftment in NOD/SCID mice.
Assuntos
Antígenos CD34/metabolismo , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Células-Tronco Hematopoéticas/fisiologia , Fator de Crescimento de Hepatócito/farmacologia , Fator de Células-Tronco/farmacologia , Animais , Antígenos CD/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Queratinas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante Heterólogo , Vimentina/metabolismoRESUMO
Many tumors display intracellular heterogeneity with subsets of cancer stem cells (CSC) that sustain tumor growth, recurrence, and therapy resistance. Cancer-associated fibroblasts (CAF) have been shown to support and regulate CSC function. Here, we investigate the interactions between CSCs and CAFs in mammary gland tumors driven by combined activation of Wnt/ß-catenin and Hgf/Met signaling in mouse mammary epithelial cells. In this setting, CSCs secrete the Hedgehog ligand SHH, which regulate CAFs via paracrine activation of Hedgehog signaling. CAFs subsequently secrete factors that promote expansion and self-renewal of CSCs. In vivo treatment of tumors with the Hedgehog inhibitor vismodegib reduce CAF and CSC expansion, resulting in an overall delay of tumor formation. Our results identify a novel intracellular signaling module that synergistically regulates CAFs and CSCs. Targeting CAFs with Hedgehog inhibitors may offer a novel therapeutic strategy against breast cancer. Cancer Res; 77(8); 2134-47. ©2017 AACR.