Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 15(12): 5454-5467, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30372084

RESUMO

The goal of this project was to explore and to statistically evaluate the responsible gastrointestinal (GI) factors that are significant factors in explaining the systemic exposure of ibuprofen, between and within human subjects. In a previous study, we determined the solution and total concentrations of ibuprofen as a function of time in aspirated GI fluids, after oral administration of an 800 mg IR tablet (reference standard) of ibuprofen to 20 healthy volunteers in fasted state conditions. In addition, we determined luminal pH and motility pressure recordings that were simultaneously monitored along the GI tract. Blood samples were taken to determine ibuprofen plasma levels. In this work, an in-depth statistical and pharmacokinetic analysis was performed to explain which underlying GI variables are determining the systemic concentrations of ibuprofen between (inter-) and within (intra-) subjects. In addition, the obtained plasma profiles were deconvoluted to link the fraction absorbed with the fraction dissolved. Multiple linear regressions were performed to explain and quantitatively express the impact of underlying GI physiology on systemic exposure of the drug (in terms of plasma Cmax/AUC and plasma Tmax). The exploratory analysis of the correlation between plasma Cmax/AUC and the time to the first phase III contractions postdose (TMMC-III) explains ∼40% of the variability in plasma Cmax for all fasted state subjects. We have experimentally shown that the in vivo intestinal dissolution of ibuprofen is dependent upon physiological variables like, in this case, pH and postdose phase III contractions. For the first time, this work presents a thorough statistical analysis explaining how the GI behavior of an ionized drug can explain the systemic exposure of the drug based on the individual profiles of participating subjects. This creates a scientifically based and rational framework that emphasizes the importance of including pH and motility in a predictive in vivo dissolution methodology to forecast the in vivo performance of a drug product. Moreover, as no extensive first-pass metabolism is considered for ibuprofen, this study demonstrates how intraluminal drug behavior is reflecting the systemic exposure of a drug.


Assuntos
Liberação Controlada de Fármacos , Jejum/fisiologia , Absorção Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiologia , Ibuprofeno/farmacocinética , Administração Oral , Adulto , Área Sob a Curva , Disponibilidade Biológica , Variação Biológica Individual , Variação Biológica da População/fisiologia , Conjuntos de Dados como Assunto , Feminino , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Ibuprofeno/administração & dosagem , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Solubilidade , Comprimidos , Adulto Jovem
2.
Mol Pharm ; 15(12): 5468-5478, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30417648

RESUMO

Exploring the intraluminal behavior of an oral drug product in the human gastrointestinal (GI) tract remains challenging. Many in vivo techniques are available to investigate the impact of GI physiology on oral drug behavior in fasting state conditions. However, little is known about the intraluminal behavior of a drug in postprandial conditions. In a previous report, we described the mean solution and total concentrations of ibuprofen after oral administration of an immediate-release (IR) tablet in fed state conditions. In parallel, blood samples were taken to assess systemic concentrations. The purpose of this work was to statistically evaluate the impact of GI physiology (e.g., pH, contractile events) within and between individuals (intra and intersubject variability) for a total of 17 healthy subjects. In addition, a pharmacokinetic (PK) analysis was performed by noncompartmental analysis, and PK parameters were correlated with underlying physiological factors (pH, time to phase III contractions postdose) and study parameters (e.g., ingested amount of calories, coadministered water). Moreover, individual plasma profiles were deconvoluted to assess the fraction absorbed as a function of time, demonstrating the link between intraluminal and systemic behavior of the drug. The results demonstrated that the in vivo dissolution of ibuprofen depends on the present gastric pH and motility events at the time of administration. Both intraluminal factors were responsible for explaining 63% of plasma Cmax variability among all individuals. For the first time, an in-depth analysis was performed on a large data set derived from an aspiration/motility study, quantifying the impact of physiology on systemic behavior of an orally administered drug product in fed state conditions. The data obtained from this study will help us to develop an in vitro biorelevant dissolution approach and optimize in silico tools in order to predict the in vivo performance of orally administered drug products, especially in fed state conditions.


Assuntos
Liberação Controlada de Fármacos , Absorção Gástrica/fisiologia , Ibuprofeno/farmacocinética , Período Pós-Prandial/fisiologia , Estômago/fisiologia , Administração Oral , Adulto , Área Sob a Curva , Disponibilidade Biológica , Variação Biológica Individual , Variação Biológica da População/fisiologia , Simulação por Computador , Conjuntos de Dados como Assunto , Feminino , Interações Alimento-Droga/fisiologia , Esvaziamento Gástrico/fisiologia , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Ibuprofeno/administração & dosagem , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Solubilidade , Comprimidos , Adulto Jovem
3.
Mol Pharm ; 14(12): 4281-4294, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28737409

RESUMO

In this study, we determined the pH and buffer capacity of human gastrointestinal (GI) fluids (aspirated from the stomach, duodenum, proximal jejunum, and mid/distal jejunum) as a function of time, from 37 healthy subjects after oral administration of an 800 mg immediate-release tablet of ibuprofen (reference listed drug; RLD) under typical prescribed bioequivalence (BE) study protocol conditions in both fasted and fed states (simulated by ingestion of a liquid meal). Simultaneously, motility was continuously monitored using water-perfused manometry. The time to appearance of phase III contractions (i.e., housekeeper wave) was monitored following administration of the ibuprofen tablet. Our results clearly demonstrated the dynamic change in pH as a function of time and, most significantly, the extremely low buffer capacity along the GI tract. The buffer capacity on average was 2.26 µmol/mL/ΔpH in fasted state (range: 0.26 and 6.32 µmol/mL/ΔpH) and 2.66 µmol/mL/ΔpH in fed state (range: 0.78 and 5.98 µmol/mL/ΔpH) throughout the entire upper GI tract (stomach, duodenum, and proximal and mid/distal jejunum). The implication of this very low buffer capacity of the human GI tract is profound for the oral delivery of both acidic and basic active pharmaceutical ingredients (APIs). An in vivo predictive dissolution method would require not only a bicarbonate buffer but also, more significantly, a low buffer capacity of dissolution media to reflect in vivo dissolution conditions.


Assuntos
Líquidos Corporais/química , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiologia , Ibuprofeno/farmacocinética , Absorção Intestinal/fisiologia , Absorção Fisiológica , Administração Oral , Adulto , Líquidos Corporais/fisiologia , Soluções Tampão , Liberação Controlada de Fármacos , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Mucosa Intestinal/fisiologia , Manometria , Pessoa de Meia-Idade , Solubilidade , Comprimidos , Equivalência Terapêutica , Fatores de Tempo , Adulto Jovem
4.
Eur J Pharm Biopharm ; 129: 162-174, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29857136

RESUMO

The goal of this study was to create a mass transport model (MTM) model for gastric emptying and upper gastrointestinal (GI) appearance that can capture the in vivo concentration-time profiles of the nonabsorbable drug phenol red in solution in the stomach and upper small intestine by direct luminal measurement while simultaneously recording the contractile activity (motility) via manometry. We advanced from a one-compartmental design of the stomach to a much more appropriate, multi-compartmental 'mixing tank' gastric model that reflects drug distribution along the different regions of the stomach as a consequence of randomly dosing relative to the different contractile phases of the migrating motor complex (MMC). To capture the intraluminal phenol red concentrations in the different segments of the GI tract both in fasted and fed state conditions, it was essential to include a bypass flow compartment ('magenstrasse') to facilitate the transport of the phenol red solution directly to the duodenum (fasted state) or antrum (fed state). The fasted and fed state models were validated with external reference data from an independent aspiration study using another nonabsorbable marker (paromomycin). These results will be essential for the development and optimization of computational programs for GI simulation and absorption prediction, providing a realistic gastric physiologically-based pharmacokinetic (PBPK) model based on direct measurement of gastric concentrations of the drug in the stomach.


Assuntos
Esvaziamento Gástrico/efeitos dos fármacos , Absorção Intestinal , Intestino Delgado/efeitos dos fármacos , Modelos Biológicos , Estômago/fisiologia , Administração Oral , Adulto , Jejum , Feminino , Voluntários Saudáveis , Humanos , Intestino Delgado/fisiologia , Masculino , Pessoa de Meia-Idade , Paromomicina/farmacologia , Fenolsulfonaftaleína/farmacologia , Período Pós-Prandial , Solubilidade , Estômago/efeitos dos fármacos , Adulto Jovem
5.
AAPS J ; 19(6): 1682-1690, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28980204

RESUMO

Gastrointestinal (GI) fluid volume and its dynamic change are integral to study drug disintegration, dissolution, transit, and absorption. However, key questions regarding the local volume and its absorption, secretion, and transit remain unanswered. The dynamic fluid compartment absorption and transit (DFCAT) model is proposed to estimate in vivo GI volume and GI fluid transport based on magnetic resonance imaging (MRI) quantified fluid volume. The model was validated using GI local concentration of phenol red in human GI tract, which was directly measured by human GI intubation study after oral dosing of non-absorbable phenol red. The measured local GI concentration of phenol red ranged from 0.05 to 168 µg/mL (stomach), to 563 µg/mL (duodenum), to 202 µg/mL (proximal jejunum), and to 478 µg/mL (distal jejunum). The DFCAT model characterized observed MRI fluid volume and its dynamic changes from 275 to 46.5 mL in stomach (from 0 to 30 min) with mucus layer volume of 40 mL. The volumes of the 30 small intestine compartments were characterized by a max of 14.98 mL to a min of 0.26 mL (0-120 min) and a mucus layer volume of 5 mL per compartment. Regional fluid volumes over 0 to 120 min ranged from 5.6 to 20.38 mL in the proximal small intestine, 36.4 to 44.08 mL in distal small intestine, and from 42 to 64.46 mL in total small intestine. The DFCAT model can be applied to predict drug dissolution and absorption in the human GI tract with future improvements.


Assuntos
Liberação Controlada de Fármacos , Absorção Intestinal , Administração Oral , Esvaziamento Gástrico , Trânsito Gastrointestinal , Humanos , Imageamento por Ressonância Magnética , Fenolsulfonaftaleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA