Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
BMC Med Imaging ; 24(1): 94, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649862

RESUMO

BACKGROUND: Large field of view CZT SPECT cameras with a ring geometry are available for some years now. Thanks to their good sensitivity and high temporal resolution, general dynamic SPECT imaging may be performed more easily, without resorting to dedicated systems. To evaluate the dynamic SPECT imaging by such cameras, we have performed an in vivo pilot study to analyze the kidney function of a pig and compare the results to standard dynamic planar imaging by a conventional gamma camera. METHODS: A 7-week-old (12 kg) female Landrace pig was injected with [99mTc]Tc-MAG3 and a 30 min dynamic SPECT acquisition of the kidneys was performed on a CZT ring camera. A fast SPECT/CT was acquired with the same camera immediately after the dynamic SPECT, without moving the pig, and used for attenuation correction and drawing regions of interest. The next day the same pig underwent a dynamic planar imaging of the kidneys by a conventional 2-head gamma camera. The dynamic SPECT acquisition was reconstructed using a MLEM algorithm with up to 20 iterations, with and without attenuation correction. Time-activity curves of the total counts of each kidney were extracted from 2D and 3D dynamic images. An adapted 2-compartment model was derived to fit the data points and extract physiological parameters. Comparison of these parameters was performed between the different reconstructions and acquisitions. RESULTS: Time-activity curves were nicely fitted with the 2-compartment model taking into account the anesthesia and bladder filling. Kidney physiological parameters were found in agreement with literature values. Good agreement of these parameters was obtained for the right kidney between dynamic SPECT and planar imaging. Regional analysis of the kidneys can be performed in the case of the dynamic SPECT imaging and provided good agreement with the whole kidney results. CONCLUSIONS: Dynamic SPECT imaging is feasible with CZT swiveling-detector ring cameras and provides results in agreement with dynamic planar imaging by conventional gamma cameras. Regional analysis of organs uptake and clearance becomes possible. Further studies are required regarding the optimization of acquisition and reconstruction parameters to improve image quality and enable absolute quantification.


Assuntos
Câmaras gama , Rim , Telúrio , Tomografia Computadorizada de Emissão de Fóton Único , Zinco , Animais , Projetos Piloto , Rim/diagnóstico por imagem , Feminino , Suínos , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Cádmio , Tecnécio Tc 99m Mertiatida , Algoritmos , Compostos Radiofarmacêuticos
2.
Clin Sci (Lond) ; 135(19): 2285-2305, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34550341

RESUMO

BACKGROUND: Small-for-size syndrome (SFSS) looms over patients needing liver resection or living-donor transplantation. Hypoxia has been shown to be crucial for the successful outcome of liver resection in the very early postoperative phase. While poorly acceptable as such in real-world clinical practice, hypoxia responses can still be simulated by pharmacologically raising levels of its transducers, the hypoxia-inducible factors (HIFs). We aimed to assess the potential role of a selective inhibitor of HIF degradation in 70% hepatectomy (70%Hx). METHODS: In a pilot study, we tested the required dose of roxadustat to stabilize liver HIF1α. We then performed 70%Hx in 8-week-old male Lewis rats and administered 25 mg/kg of roxadustat (RXD25) at the end of the procedure. Regeneration was assessed: ki67 and 5-ethynyl-2'-deoxyuridine (EdU) immunofluorescent labeling, and histological parameters. We also assessed liver function via a blood panel and functional gadoxetate-enhanced magnetic resonance imaging (MRI), up to 47 h after the procedure. Metabolic results were analyzed by means of RNA sequencing (RNAseq). RESULTS: Roxadustat effectively increased early HIF1α transactivity. Liver function did not appear to be improved nor liver regeneration to be accelerated by the experimental compound. However, treated livers showed a mitigation in hepatocellular steatosis and ballooning, known markers of cellular stress after liver resection. RNAseq confirmed that roxadustat unexpectedly increases lipid breakdown and cellular respiration. CONCLUSIONS: Selective HIF stabilization did not result in an enhanced liver function after standard liver resection, but it induced interesting metabolic changes that are worth studying for their possible role in extended liver resections and fatty liver diseases.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fígado Gorduroso/tratamento farmacológico , Glicina/análogos & derivados , Hepatectomia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoquinolinas/farmacologia , Regeneração Hepática/efeitos dos fármacos , Fígado/efeitos dos fármacos , Inibidores de Prolil-Hidrolase/farmacologia , Animais , Hipóxia Celular , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Glicina/farmacologia , Fígado/metabolismo , Fígado/patologia , Fígado/cirurgia , Masculino , Estabilidade Proteica , Proteólise , Ratos Endogâmicos Lew , Transcriptoma
3.
Ann Surg ; 267(6): 1191-1201, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28252516

RESUMO

OBJECTIVE: The purpose of this study was to assess whether perfusion-decellularization technology could be applied to facial grafts. BACKGROUND: Facial allotransplantation remains an experimental procedure. Regenerative medicine techniques allow fabrication of transplantable organs from an individual's own cells, which are seeded into extracellular matrix (ECM) scaffolds from animal or human organs. Therefore, we hypothesized that ECM scaffolds also can be created from facial subunits. We explored the use of the porcine ear as a clinically relevant face subunit model to develop regenerative medicine-related platforms for facial bioengineering. METHODS: Porcine ear grafts were decellularized and histologic, immunologic, and cell culture studies done to determine whether scaffolds retained their 3D framework and molecular content; were biocompatible in vitro and in vivo, and triggered an anti-MHC immune response from the host. RESULTS: The cellular compartment of the porcine ear was completely removed except for a few cartilaginous cells, leaving behind an acellular ECM scaffold; this scaffold retained its complex 3D architecture and biochemical components. The framework of the vascular tree was intact at all hierarchical levels and sustained a physiologically relevant blood pressure when implanted in vivo. Scaffolds were biocompatible in vitro and in vivo, and elicited no MHC immune response from the host. Cells from different types remained viable and could even differentiate at the scale of a whole-ear scaffold. CONCLUSIONS: Acellular scaffolds were produced from the porcine ear, and may be a valuable platform to treat facial deformities using regenerative medicine approaches.


Assuntos
Derme Acelular , Matriz Extracelular , Transplante de Face/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Orelha , Projetos Piloto , Suínos
4.
J Surg Res ; 222: 167-179, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29273368

RESUMO

BACKGROUND: Glutaraldehyde-treated pericardia for cardiovascular applications have poor long-term clinical results. The efficacy of a combined physical/chemical treatment to improve pericardium biocompatibility and vascular regeneration was assessed and compared with detergent treatment and two commercial bovine pericardia: PeriGuard (DGBP) and Edwards pericardium (nDGBP). The physical and chemical process was applied to bovine and human pericardia (DBP-DHP), and the detergent process was applied to bovine (DDBP). MATERIAL AND METHODS: Native (NBP) and treated bovine tissues were assessed for decellularization (HE/DAPI/DNA/α-Gal and MHC-1 staining) and mechanical integrity ex vivo. Twenty Wistar rats received subcutaneous patches of each bovine tissue to assess immunogenic response up to 4 months (flow cytometry). Ten additional rats received four subcutaneous bovine-treated patches (one/condition) to evaluate the inflammatory reaction (CD3/CD68 immunostaining), calcification (von Kossa staining/calcium quantification), and integration assessment (Hematoxylin and eosin staining). Finally, 15 rodents received a patch on the aorta (DBP n = 5, DHP n = 5, and DGBP n = 5), and vascular biocompatibility and arterial wall regeneration were assessed after 4 months (CD3/CD68/CD31/ASMA and Miller staining). RESULTS: DBP reached the higher level of decellularization, no immunogenic response whereas maintaining mechanical properties. DBP induced the lowest level grade of inflammation after 2 months (P < 0.05) concomitantly for better remodeling. No complications occurred with DBP and DHP where vascular regeneration was confirmed. Moreover, they induced a low level of CD3/CD68 infiltrations. CONCLUSIONS: This process significantly reduces immunogenicity and improves biocompatibility of bovine and human pericardia for better vascular regeneration.


Assuntos
Aorta/fisiologia , Aorta/cirurgia , Pericárdio/transplante , Regeneração/imunologia , Animais , Bovinos , DNA/análise , Feminino , Xenoenxertos/química , Humanos , Masculino , Teste de Materiais , Pericárdio/imunologia , Ratos Wistar
5.
Ann Vasc Surg ; 49: 179-190, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29501598

RESUMO

BACKGROUND: There is a need for small caliber vascular prosthesis. Synthetic grafts are hindered by thrombogenicity and rapid occlusion. Decellularized matrices could be an alternative. We assessed in vitro and in vivo the biocompatibility of porcine artery treated with a chemical/physical process for decellularization and graft securitization with non/conventional pathogens inactivation. METHODS: Porcine carotid arteries (PCA) were treated. First, biopsies (n = 4/tissue) were performed before/after treatment to assess decellularization (hematoxylin and eosin/-4',6-diamidino-2-phenylindole/DNA/Miller). Second, 5 rats received an abdominal aortic patch of decellularized PCA (DPCA). Four pigs received subcutaneous DPCA implants (n = 2/pig). Half were explanted at day 15 and half at day 30. Finally, 2 pigs received DPCA (n = 2) and polytetrafluoroethylene prosthesis (n = 1), respectively, as carotid interposition. Implants were removed at day 30. Inflammation (CD3 and CD68 immunostaining) calcifications (von Kossa staining), remodeling (hematoxylin and eosin), and vascular characterization (CD31 and alpha-smooth muscle actin immunofluorescent staining) were investigated. RESULTS: Ninety-five percentage of decellularization was obtained without structural deterioration. No death occurred. Low inflammatory reaction was found in the 2 models for DPCA. Acquisition of vascular identity was confirmed in the rodent and porcine models. Similarity between native PCA and DPCA was observed after 30 days. In contrast, polytetrafluoroethylene graft showed severe calcifications, higher CD3 reaction, and higher intimal hyperplasia (P < 0.05). CONCLUSIONS: The physical and chemical process ensures decellularization of carotid porcine arteries and their in vivo remodeling with the presence of an endothelium and smooth-muscle-like cells as well as a low level of inflammatory cells.


Assuntos
Aorta Abdominal/cirurgia , Bioprótese , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/transplante , Hidróxido de Sódio/farmacologia , Actinas/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Complexo CD3/metabolismo , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Xenoenxertos , Hiperplasia , Masculino , Neointima , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Politetrafluoretileno , Estudo de Prova de Conceito , Desenho de Prótese , Ratos Wistar , Sus scrofa , Fatores de Tempo , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Remodelação Vascular
6.
Eur Surg Res ; 59(1-2): 58-71, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621750

RESUMO

BACKGROUND/PURPOSE: Calcifications and absence of growth potential are the major drawbacks of glutaraldehyde-treated prosthesis. Decellularized and secured xeno-/allogeneic matrices were assessed in a preclinical porcine model for biocompatibility and vascular remodeling in comparison to glutaraldehyde-fixed bovine pericardium (GBP; control). METHODS: Native human (fascia lata, pericardium) and porcine tissues (peritoneum) were used and treated. In vitro, biopsies were performed before and after treatment to assess decellularization (hematoxylin and eosin/DAPI). In vivo, each decellularized and control tissue sample was implanted subcutaneously in 4 mini-pigs. In addition, 9 mini-pigs received a patch or a tubularized prosthesis interposition on the carotid artery or abdominal aorta of decellularized (D) human fascia lata (DHFL; n = 4), human pericardium (DHP; n = 9), porcine peritoneum (DPPt; n = 7), and control tissue (GBP: n = 3). Arteries were harvested after 1 month and subcutaneous samples after 15-30 days. Tissues were processed for hematoxylin and eosin/von Kossa staining and immunohistochemistry for CD31, alpha-smooth muscle actin, CD3, and CD68. Histomorphometry was achieved by point counting. RESULTS: A 95% decellularization was confirmed for DHP and DPPt, and to a lower degree for DHFL. In the subcutaneous protocol, CD3 infiltration was significantly higher at day 30 in GBP and DHFL, and CD68 infiltration was significantly higher for GBP (p < 0.05). In intravascular study, no deaths, aneurysms, or pseudoaneurysms were observed. Inflammatory reaction was significantly higher for DHFL and GBP (p < 0.05), while it was lower and comparable for DHP/DPPt. DHP and DPPt showed deeper recellularization, and a new arterial wall was characterized. CONCLUSIONS: In a preclinical model, DPPt and DHP offered better results than conventional commercialized GBP for biocompatibility and vascular remodeling.


Assuntos
Prótese Vascular , Transplante Heterólogo/métodos , Remodelação Vascular , Animais , Bovinos , Glutaral , Humanos , Teste de Materiais , Pericárdio/transplante , Peritônio/transplante , Suínos , Transplante Homólogo
7.
Front Bioeng Biotechnol ; 11: 1295075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38425730

RESUMO

Introduction: Nipple-areolar complex (NAC) reconstruction after breast cancer surgery is challenging and does not always provide optimal long-term esthetic results. Therefore, generating a NAC using tissue engineering techniques, such as a decellularization-recellularization process, is an alternative option to recreate a specific 3D NAC morphological unit, which is then covered with an in vitro regenerated epidermis and, thereafter, skin-grafted on the reconstructed breast. Materials and methods: Human NACs were harvested from cadaveric donors and decellularized using sequential detergent baths. Cellular clearance and extracellular matrix (ECM) preservation were analyzed by histology, as well as by DNA, ECM proteins, growth factors, and residual sodium dodecyl sulfate (SDS) quantification. In vivo biocompatibility was evaluated 30 days after the subcutaneous implantation of native and decellularized human NACs in rats. In vitro scaffold cytocompatibility was assessed by static seeding of human fibroblasts on their hypodermal side for 7 days, while human keratinocytes were seeded on the scaffold epidermal side for 10 days by using the reconstructed human epidermis (RHE) technique to investigate the regeneration of a new epidermis. Results: The decellularized NAC showed a preserved 3D morphology and appeared white. After decellularization, a DNA reduction of 98.3% and the absence of nuclear and HLA staining in histological sections confirmed complete cellular clearance. The ECM architecture and main ECM proteins were preserved, associated with the detection and decrease in growth factors, while a very low amount of residual SDS was detected after decellularization. The decellularized scaffolds were in vivo biocompatible, fully revascularized, and did not induce the production of rat anti-human antibodies after 30 days of subcutaneous implantation. Scaffold in vitro cytocompatibility was confirmed by the increasing proliferation of seeded human fibroblasts during 7 days of culture, associated with a high number of living cells and a similar viability compared to the control cells after 7 days of static culture. Moreover, the RHE technique allowed us to recreate a keratinized pluristratified epithelium after 10 days of culture. Conclusion: Tissue engineering allowed us to create an acellular and biocompatible NAC with a preserved morphology, microarchitecture, and matrix proteins while maintaining their cell growth potential and ability to regenerate the skin epidermis. Thus, tissue engineering could provide a novel alternative to personalized and natural NAC reconstruction.

8.
Bioengineering (Basel) ; 10(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36829637

RESUMO

The lack of viability of massive bone allografts for critical-size bone defect treatment remains a challenge in orthopedic surgery. The literature has reviewed the advantages of a multi-combined treatment with the synergy of an osteoconductive extracellular matrix (ECM), osteogenic stem cells, and growth factors (GFs). Questions are still open about the need for ECM components, the influence of the decellularization process on the latter, the related potential loss of function, and the necessity of using pre-differentiated cells. In order to fill in this gap, a bone allograft surrounded by an osteogenic membrane made of a decellularized collagen matrix from human fascia lata and seeded with periosteal mesenchymal stem cells (PMSCs) was analyzed in terms of de-/recellularization, osteogenic properties, PMSC self-differentiation, and angiogenic potential. While the decellularization processes altered the ECM content differently, the main GF content was decreased in soft tissues but relatively increased in hard bone tissues. The spontaneous osteogenic differentiation was necessarily obtained through contact with a mineralized bone matrix. Trying to deepen the knowledge on the complex matrix-cell interplay could further propel these tissue engineering concepts and lead us to provide the biological elements that allow bone integration in vivo.

9.
Front Endocrinol (Lausanne) ; 13: 935060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034433

RESUMO

The potential use of porcine islets for transplantation in humans has triggered interest in understanding porcine islet physiology. However, the number of studies dedicated to this topic has remained limited, as most islet physiologists prefer to use the less time-consuming rodent model or the more clinically relevant human islet. An often-overlooked aspect of pig islet physiology is its alpha cell activity and regulation of its glucagon secretion. In vitro islet perifusion is a reliable method to study the dynamics of hormone secretion in response to different stimuli. We thus used this method to quantify and study glucagon secretion from pig islets. Pancreatic islets were isolated from 20 neonatal (14 to 21-day old) and 5 adult (>2 years) pigs and cultured in appropriate media. Islet perifusion experiments were performed 8 to 10 days post-isolation for neonatal islets and 1 to 2 days post-isolation for adult islets. Insulin and glucagon were quantified in perifusion effluent fractions as well as in islet extracts by RIA. Increasing glucose concentration from 1 mM to 15 mM markedly inhibited glucagon secretion independently of animal age. Interestingly, the effect of high glucose was more drastic on glucagon secretion compared to its effect on insulin secretion. In vivo, glucose injection during IVGTT initiated a quick (2-10 minutes) 3-fold decrease of plasmatic glucagon whereas the increase of plasmatic insulin took 20 minutes to become significant. These results suggest that regulation of glucagon secretion significantly contributes to glucose homeostasis in pigs and might compensate for the mild changes in insulin secretion in response to changes in glucose concentration.


Assuntos
Células Secretoras de Glucagon , Glucagon , Adulto , Animais , Glucose , Humanos , Recém-Nascido , Insulina , Hormônios Pancreáticos , Suínos
10.
Front Immunol ; 13: 890353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655777

RESUMO

Background: Early allograft dysfunction (EAD) following liver transplantation (LT) remains a major threat to the survival of liver grafts and recipients. In animal models, it is shown that hepatic ischemia-reperfusion injury (IRI) triggers phosphorylation of Mixed Lineage Kinase domain-like protein (pMLKL) inducing necroptotic cell death. However, the clinical implication of pMLKL-mediated cell death in human hepatic IRI remains largely unexplored. In this study, we aimed to investigate the expression of pMLKL in human liver grafts and its association with EAD after LT. Methods: The expression of pMLKL was determined by immunohistochemistry in liver biopsies obtained from both human and rat LT. Human liver biopsies were obtained at the end of preservation (T0) and ~1 hour after reperfusion (T1). The positivity of pMLKL was quantified electronically and compared in rat and human livers and post-LT outcomes. Multiplex immunofluorescence staining was performed to characterize the pMLKL-expressing cells. Results: In the rat LT model, significant pMLKL expression was observed in livers after IRI as compared to livers of sham-operation animals. Similarly, the pMLKL score was highest after IRI in human liver grafts (in T1 biopsies). Both in rats and humans, the pMLKL expression is mostly observed in the portal triads. In grafts who developed EAD after LT (n=24), the pMLKL score at T1 was significantly higher as compared to non-EAD grafts (n=40). ROC curve revealed a high predictive value of pMLKL score at T1 (AUC 0.70) and the ratio of pMLKL score at T1 and T0 (pMLKL-index, AUC 0.82) for EAD. Liver grafts with a high pMLKL index (>1.64) had significantly higher levels of serum ALT, AST, and LDH 24 hours after LT compared to grafts with a low pMLKL index. Multivariate logistical regression analysis identified the pMLKL-index (Odds ratio=1.3, 95% CI 1.1-1.7) as a predictor of EAD development. Immunohistochemistry on serial sections and multiplex staining identified the periportal pMLKL-positive cells as portal fibroblasts, fibrocytes, and a minority of cholangiocytes. Conclusion: Periportal pMLKL expression increased significantly after IRI in both rat and human LT. The histological score of pMLKL is predictive of post-transplant EAD and is associated with early liver injury after LT. Periportal non-parenchymal cells (i.e. fibroblasts) appear most susceptible to pMLKL-mediated cell death during hepatic IRI.


Assuntos
Isquemia , Necroptose , Aloenxertos , Animais , Fígado , Ratos , Reperfusão
11.
Front Bioeng Biotechnol ; 10: 1003861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743653

RESUMO

Introduction: Durable reconstruction of critical size bone defects is still a surgical challenge despite the availability of numerous autologous and substitute bone options. In this paper, we have investigated the possibility of creating a living bone allograft, using the perfusion/decellularization/recellularization (PDR) technique, which was applied to an original model of vascularized porcine bone graft. Materials and Methods: 11 porcine bone forelimbs, including radius and ulna, were harvested along with their vasculature including the interosseous artery and then decellularized using a sequential detergent perfusion protocol. Cellular clearance, vasculature, extracellular matrix (ECM), and preservation of biomechanical properties were evaluated. The cytocompatibility and in vitro osteoinductive potential of acellular extracellular matrix were studied by static seeding of NIH-3T3 cells and porcine adipose mesenchymal stem cells (pAMSC), respectively. Results: The vascularized bone grafts were successfully decellularized, with an excellent preservation of the 3D morphology and ECM microarchitecture. Measurements of DNA and ECM components revealed complete cellular clearance and preservation of ECM's major proteins. Bone mineral density (BMD) acquisitions revealed a slight, yet non-significant, decrease after decellularization, while biomechanical testing was unmodified. Cone beam computed tomography (CBCT) acquisitions after vascular injection of barium sulphate confirmed the preservation of the vascular network throughout the whole graft. The non-toxicity of the scaffold was proven by the very low amount of residual sodium dodecyl sulfate (SDS) in the ECM and confirmed by the high live/dead ratio of fibroblasts seeded on periosteum and bone ECM-grafts after 3, 7, and 16 days of culture. Moreover, cell proliferation tests showed a significant multiplication of seeded cell populations at the same endpoints. Lastly, the differentiation study using pAMSC confirmed the ECM graft's potential to promote osteogenic differentiation. An osteoid-like deposition occurred when pAMSC were cultured on bone ECM in both proliferative and osteogenic differentiation media. Conclusion: Fully decellularized bone grafts can be obtained by perfusion decellularization, thereby preserving ECM architecture and their vascular network, while promoting cell growth and differentiation. These vascularized decellularized bone shaft allografts thus present a true potential for future in vivo reimplantation. Therefore, they may offer new perspectives for repairing large bone defects and for bone tissue engineering.

12.
Transplantation ; 106(8): 1565-1576, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35581683

RESUMO

BACKGROUND: Apoptosis contributes to the severity of ischemia-reperfusion injury (IRI), limiting the use of extended criteria donors in liver transplantation (LT). Machine perfusion has been proposed as a platform to administer specific therapies to improve graft function. Alternatively, the inhibition of genes associated with apoptosis during machine perfusion could alleviate IRI post-LT. The aim of the study was to investigate whether inhibition of an apoptosis-associated gene (FAS) using a small interfering RNA (siRNA) approach could alleviate IRI in a rat LT model. METHODS: In 2 different experimental protocols, FASsiRNA (500 µg) was administered to rat donors 2 h before organ procurement, followed by 22 h of static cold storage, (SCS) or was added to the perfusate during 1 h of ex situ hypothermic oxygenated perfusion (HOPE) to livers previously preserved for 4 h in SCS. RESULTS: Transaminase levels were significantly lower in the SCS-FASsiRNA group at 24 h post-LT. Proinflammatory cytokines (interleukin-2, C-X-C motif chemokine 10, tumor necrosis factor alpha, and interferon gamma) were significantly decreased in the SCS-FASsiRNA group, whereas the interleukin-10 anti-inflammatory cytokine was significantly increased in the HOPE-FASsiRNA group. Liver absorption of FASsiRNA after HOPE session was demonstrated by confocal microscopy; however, no statistically significant differences on the apoptotic index, necrosis levels, and FAS protein transcription between treated and untreated groups were observed. CONCLUSIONS: FAS inhibition through siRNA therapy decreases the severity of IRI after LT in a SCS protocol; however the association of siRNA therapy with a HOPE perfusion model is very challenging. Future studies using better designed siRNA compounds and appropriate doses are required to prove the siRNA therapy effectiveness during liver HOPE liver perfusion.


Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Obtenção de Tecidos e Órgãos , Animais , Humanos , Fígado/patologia , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Perfusão/métodos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle
13.
J Tissue Eng ; 11: 2041731420924818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523669

RESUMO

Cell encapsulation could overcome limitations of free islets transplantation but is currently limited by inefficient cells immune protection and hypoxia. As a response to these challenges, we tested in vitro and in vivo the safety and efficacy of a new macroencapsulation device named MailPan®. Membranes of MailPan® device were tested in vitro in static conditions. Its bio-integration and level of oxygenation was assessed after implantation in non-diabetic rats. Immune protection properties were also assessed in rat with injection in the device of allogeneic islets with incompatible Major Histocompatibility Complex. Finally, function was assessed in diabetic rats with a Beta cell line injected in MailPan®. In vitro, membranes of the device showed high permeability to glucose, insulin, and rejected IgG. In rat, the device displayed good bio-integration, efficient vascularization, and satisfactory oxygenation (>5%), while positron emission tomography (PET)-scan and angiography also highlighted rapid exchanges between blood circulation and the MailPan®. The device showed its immune protection properties by preventing formation, by the rat recipient, of antibodies against encapsulated allogenic islets. Injection of a rat beta cell line into the device normalized fasting glycemia of diabetic rat with retrieval of viable cell clusters after 2 months. These data suggest that MailPan® constitutes a promising encapsulation device for widespread use of cell therapy for type 1 diabetes.

14.
J Cardiothorac Surg ; 13(1): 34, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695259

RESUMO

BACKGROUND: Glutaraldehyde fixed xenogeneic heart valve prosthesis are hindered by calcification and lack of growth potential. The aim of tissue decellularization is to remove tissue antigenicity, avoiding the use of glutaraldehyde and improve valve integration with low inflammation and host cell recolonization. In this preliminary study, we investigated the efficacy of a NaOH-based process for decellularization and biocompatibility improvement of porcine pulmonary heart valves in comparison to a detergent-based process (SDS-SDC0, 5%). METHODS: Native cryopreserved porcine pulmonary heart valves were treated with detergent and NaOH-based processes. Decellularization was assessed by Hematoxylin and eosin/DAPI/alpha-gal/SLA-I staining and DNA quantification of native and processed leaflets, walls and muscles. Elongation stress test investigated mechanical integrity of leaflets and walls (n = 3 tests/valve component) of valves in the native and treated groups (n = 4/group). Biochemical integrity (collagen/elastin/glycosaminoglycans content) of leaflet-wall and muscle of the valves (n = 4/group) was assessed and compared between groups with trichrome staining (Sirius Red/Miller/Alcian blue). Secondly, a preliminary in vivo study assessed biocompatibility (CD3 and CD68 immunostaining) and remodeling (Hematoxylin and eosin/CD31 and ASMA immunofluorescent staining) of NaOH processed valves implanted in orthotopic position in young Landrace pigs, at 1 (n = 1) and 3 months (n = 2). RESULTS: Decellularization was better achieved with the NaOH-based process (92% vs 69% DNA reduction in the wall). Both treatments did not significantly alter mechanical properties. The detergent-based process induced a significant loss of glycosaminoglycans (p < 0,05). In vivo, explanted valves exhibited normal morphology without any sign of graft dilatation, degeneration or rejection. Low inflammation was noticed at one and three months follow-up (1,8 +/- 3,03 and 0,9836 +/- 1,3605 CD3 cells/0,12 mm2 in the leaflets). In one animal, at three months we documented minimal calcification in the area of sinus leaflet and in one, microthrombi formation on the leaflet surface at 1 month. The endoluminal side of the valves showed partial reendothelialization. CONCLUSIONS: NaOH-based process offers better porcine pulmonary valve decellularization than the detergent process. In vivo, the NaOH processed valves showed low inflammatory response at 3 months and partial recellularization. Regarding additional property of securing, this treatment should be considered for the new generation of heart valves prosthesis. Graphical abstract of the study.


Assuntos
Bioprótese , Criopreservação/métodos , Detergentes , Próteses Valvulares Cardíacas , Valva Pulmonar , Hidróxido de Sódio , Animais , Fenômenos Biomecânicos , Calcinose/prevenção & controle , Colágeno/análise , Elastina/análise , Glicosaminoglicanos/análise , Implante de Prótese de Valva Cardíaca , Xenoenxertos , Valva Pulmonar/química , Valva Pulmonar/transplante , Suínos , Engenharia Tecidual/métodos
15.
Cell Transplant ; 26(5): 901-911, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27938490

RESUMO

Porcine islets show notoriously low insulin secretion levels in response to glucose stimulation. While this is somehow expected in the case of immature islets isolated from fetal and neonatal pigs, disappointingly low secretory responses are frequently reported in studies using in vitro-maturated fetal and neonatal islets and even fully differentiated adult islets. Herein we show that ß-cell-specific expression of a modified glucagon-like peptide-1 (GLP-1) and of a constitutively activated type 3 muscarinic receptor (M3R) efficiently amplifies glucose-stimulated insulin secretion (GSIS). Both adult and neonatal isolated pig islets were treated with adenoviral expression vectors carrying sequences encoding for GLP-1 and/or M3R. GSIS from transduced and control islets was evaluated during static incubation and dynamic perifusion assays. While expression of GLP-1 did not affect basal or stimulated insulin secretion, activated M3R produced a twofold increase in both first and second phases of GSIS. Coexpression of GLP-1 and M3R caused an even greater increase in the secretory response, which was amplified fourfold compared to controls. In conclusion, our work highlights pig islet insulin secretion deficiencies and proposes concomitant activation of cAMP-dependent and cholinergic pathways as a solution to ameliorate GSIS from pig islets used for transplantation.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptor Muscarínico M3/metabolismo , Animais , Peptídeo 1 Semelhante ao Glucagon/genética , Glucoquinase/metabolismo , Técnicas In Vitro , Insulina/metabolismo , Ilhotas Pancreáticas/ultraestrutura , Microscopia Eletrônica , Receptor Muscarínico M3/genética , Suínos
16.
Biomaterials ; 32(34): 8880-91, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21872925

RESUMO

Adipose tissue was only recently considered as a potential source of mesenchymal stem cells (MSCs) for bone tissue engineering. To improve the osteogenicity of acellular bone allografts, adipose MSCs (AMSCs) and bone marrow MSCs (BM-MSCs) at nondifferentiated and osteogenic-differentiated stages were investigated in vitro and in vivo. In vitro experiments demonstrated a superiority of AMSCs for proliferation (6.1±2.3 days vs. 9.0±1.9 days between each passage for BM-MSCs, respectively, P<0.001). A significantly higher T-cell depletion (revealed by mixed lymphocyte reaction, [MLR]) was found for AMSCs (vs. BM-MSCs) at both non- and differentiated stages. Although nondifferentiated AMSCs secreted a higher amount of vascular endothelial growth factor [VEGF] in vitro (between 24 and 72 h of incubation at 0.1-21% O(2)) than BM-MSCs (P<0.001), the osteogenic differentiation induced a significantly higher VEGF release by BM-MSCs at each condition (P<0.001). After implantation in the paraspinal muscles of nude rats, a significantly higher angiogenesis (histomorphometry for vessel development (P<0.005) and VEGF expression (P<0.001)) and osteogenesis (as revealed by osteocalcin expression (P<0.001) and micro-CT imagery for newly formed bone tissue (P<0.05)) were found for osteogenic-differentiated AMSCs in comparison to BM-MSCs after 30 days of implantation. Osteogenic-differentiated AMSCs are the best candidate to improve the angio-/osteogenicity of decellularized bone allografts.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Transplante Ósseo , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Adipócitos/citologia , Adipócitos/imunologia , Adipócitos/metabolismo , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Transplante Ósseo/métodos , Diferenciação Celular , Células Cultivadas , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Osteocalcina/metabolismo , Osteogênese , Ratos , Ratos Nus , Suínos , Transplante Homólogo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA