Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 43(11): e468-e489, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37767704

RESUMO

BACKGROUND: Current therapies cannot completely reverse advanced atherosclerosis. High levels of amino acids, induced by Western diet, stimulate mTORC1 (mammalian target of rapamycin complex 1)-autophagy defects in macrophages, accelerating atherosclerotic plaque progression. In addition, autophagy-lysosomal dysfunction contributes to plaque necrotic core enlargement and lipid accumulation. Therefore, it is essential to investigate the novel mechanism and molecules to reverse amino acid-mTORC1-autophagy signaling dysfunction in macrophages of patients with advanced atherosclerosis. METHODS: We observed that Gpr137b-ps (G-protein-coupled receptor 137B, pseudogene) was upregulated in advanced atherosclerotic plaques. The effect of Gpr137b-ps on the progression of atherosclerosis was studied by generating advanced plaques in ApoE-/- mice with cardiac-specific knockout of Gpr137b-ps. Bone marrow-derived macrophages and mouse mononuclear macrophage cell line RAW264.7 cells were subjected to starvation or amino acid stimulation to study amino acid-mTORC1-autophagy signaling. Using both gain- and loss-of-function approaches, we explored the mechanism of Gpr137b-ps-regulated autophagy. RESULTS: Our results demonstrated that Gpr137b-ps deficiency led to enhanced autophagy in macrophages and reduced atherosclerotic lesions, characterized by fewer necrotic cores and less lipid accumulation. Knockdown of Gpr137b-ps increased autophagy and prevented amino acid-induced mTORC1 signaling activation. As the downstream binding protein of Gpr137b-ps, HSC70 (heat shock cognate 70) rescued the impaired autophagy induced by Gpr137b-ps. Furthermore, Gpr137b-ps interfered with the HSC70 binding to G3BP (Ras GTPase-activating protein-binding protein), which tethers the TSC (tuberous sclerosis complex) complex to lysosomes and suppresses mTORC1 signaling. In addition to verifying that the NTF2 (nuclear transport factor 2) domain of G3BP binds to HSC70 by in vitro protein synthesis, we further demonstrated that HSC70 binds to the NTF2 domain of G3BP through its W90-F92 motif by using computational modeling. CONCLUSIONS: These findings reveal that Gpr137b-ps plays an essential role in the regulation of macrophage autophagy, which is crucial for the progression of advanced atherosclerosis. Gpr137b-ps impairs the interaction of HSC70 with G3BP to regulate amino acid-mTORC1-autophagy signaling, and these results provide a new potential therapeutic direction for the treatment of advanced atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , RNA Longo não Codificante , Humanos , Camundongos , Animais , RNA Longo não Codificante/metabolismo , Aterosclerose/patologia , Placa Aterosclerótica/patologia , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Autofagia/fisiologia , Aminoácidos/metabolismo , Lipídeos , Mamíferos/genética
2.
Arterioscler Thromb Vasc Biol ; 40(6): 1464-1478, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268789

RESUMO

OBJECTIVE: Despite the current antiatherosclerotic and antithrombotic therapies, the incidence of advanced atherosclerosis-associated clinical events remains high. Whether long noncoding RNAs (lncRNAs) affect the progression of atherosclerosis and whether they are potential targets for the treatment of advanced atherosclerosis are poorly understood. Approach and Results: The progression of atherosclerotic lesions was accompanied by dynamic alterations in lncRNA expression, as revealed by RNA sequencing and quantitative polymerase chain reaction. Among the dynamically changing lncRNAs, we identified a novel lncRNA, lncRNA Associated with the Progression and Intervention of Atherosclerosis (RAPIA), that was highly expressed in advanced atherosclerotic lesions and in macrophages. Inhibition of RAPIA in vivo not only repressed the progression of atherosclerosis but also exerted atheroprotective effects similar to those of atorvastatin on advanced atherosclerotic plaques that had already formed. In vitro assays demonstrated that RAPIA promoted proliferation and reduced apoptosis of macrophages. A molecular sponge interaction between RAPIA and microRNA-183-5p was demonstrated by dual-luciferase reporter and RNA immunoprecipitation assays. Rescue assays indicated that RAPIA functioned at least in part by targeting the microRNA-183-5p/ITGB1 (integrin ß1) pathway in macrophages. In addition, the transcription factor FoxO1 (forkhead box O1) could bind to the RAPIA promoter region and facilitate the expression of RAPIA. CONCLUSIONS: The progression of atherosclerotic lesions was accompanied by dynamic changes in the expression of lncRNAs. Inhibition of the pivotal lncRNA RAPIA may be a novel preventive and therapeutic strategy for advanced atherosclerosis, especially in patients resistant or intolerant to statins.


Assuntos
Aterosclerose/terapia , Expressão Gênica , Macrófagos/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , Animais , Apoptose/efeitos dos fármacos , Aterosclerose/genética , Aterosclerose/prevenção & controle , Atorvastatina/farmacologia , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Proteína Forkhead Box O1/metabolismo , Humanos , Integrina beta1/metabolismo , Macrófagos/química , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Regiões Promotoras Genéticas/fisiologia , Células RAW 264.7 , RNA Longo não Codificante/fisiologia
3.
Cardiovasc Drugs Ther ; 35(2): 231-247, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33404925

RESUMO

The coronavirus disease 19 (COVID-19) pandemic poses a serious global threat to human health and the economy. Based on accumulating evidence, its continuous progression involves not only pulmonary injury but also damage to the cardiovascular system due to intertwined pathophysiological risks. As a point of convergence in the pathophysiologic process between COVID-19 and heart failure (HF), cytokine storm induces the progression of COVID-19 in patients presenting pre-existing or new onset myocardial damage and even HF. Cytokine storm, as a trigger of the progression of HF in patients with COVID-19, has become a novel focus to explore therapies for target populations. In this review, we briefly introduce the basis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and illuminate the mechanism and links among COVID-19, cytokine storm, and HF. Furthermore, we discuss drugs and therapeutic targets for patients with COVID-19 and HF.


Assuntos
Antivirais/farmacologia , COVID-19 , Síndrome da Liberação de Citocina , Insuficiência Cardíaca , SARS-CoV-2 , COVID-19/imunologia , COVID-19/fisiopatologia , COVID-19/terapia , Síndrome da Liberação de Citocina/fisiopatologia , Síndrome da Liberação de Citocina/terapia , Síndrome da Liberação de Citocina/virologia , Progressão da Doença , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/terapia , Humanos , Imunomodulação/imunologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia
4.
Heliyon ; 9(12): e23191, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149191

RESUMO

Background: Coronary artery calcification (CAC), a surrogate of atherosclerosis, is related to stent underexpansion and adverse cardiac events. However, the effect of CAC on plaque stability is still controversial and the morphological significance of CAC has yet to be elucidated. Methods: A retrospective series of 419 patients with acute coronary syndrome (ACS) who underwent optical coherence tomography (OCT) were enrolled. Patients were classified into three groups based on the calcification size in culprit plaques and the features of the culprit and non-culprit plaques among these groups were compared. Logistic regression was used to analyze independent risk factors for culprit plaque rupture and the nonlinear relationship between calcification parameters and culprit plaque rupture. Furthermore, we compared the detailed calcification parameters of different kinds of plaques. Results: A total of 419 culprit plaques and 364 non-culprit plaques were identified. The incidence of calcification was 53.9 % in culprit plaques and 50.3 % in non-culprit plaques. Compared with culprit plaques without calcification, plaque rupture, macrophages and cholesterol crystals were more frequently observed in the spotty calcification group, and the lipid length was longer; the incidence of macrophages and cholesterol crystals was higher in the macrocalcification group. Calcification tended to be smaller in ruptured plaques than in non-ruptured plaques. Moreover, the arc and length of calcification were greater in culprit plaques than in non-culprit plaques. Conclusions: Vulnerable features were more frequently observed in culprit plaques with spotty calcification, whereas the presence of macrocalcification calcifications did not significantly increase plaque vulnerability. Calcification tends to be larger in culprit plaques than in non-culprit plaques.

5.
Phytomedicine ; 101: 154104, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35461005

RESUMO

BACKGROUND: Cardiovascular disease is a leading cause of death, which signifies the urgent need for effective anti-atherosclerotic strategies. Gut microbiota-dependent trimethylamine-N-oxide (TMAO) is associated with atherosclerosis, and geraniin, a natural polyphenol with various biological activities, might play key role in this process. PURPOSE: We aimed to investigate the pharmacological activity of geraniin in atherosclerosis through remodeling the gut microbiota. METHODS: C57BL/6J ApoE-/- mice were administrated geraniin for 12 weeks. The colon contents were analyzed via 16S rRNA sequencing. Pathological staining was performed to evaluate the atherosclerotic characteristics. Cytokine assays detected the levels of plasma inflammatory cytokines. RAW264.7 cells were cultured in vitro and treated with TMAO. Tandem Mass Tag quantitative proteomics analysis and western blot were performed to investigate the effect of TMAO in macrophages. RESULTS: The plasma TMAO level in mice significantly decreased after geraniin intervention. The predominant intestinal microflora from geraniin-treated mice were Bacteroides (65.3%) and Firmicutes (30.6%). Pathological staining demonstrated that administration of geraniin attenuated atherosclerotic characteristics. After geraniin treatment, plasma levels of IL-1ß, IL-6, and TNF-α in mice were significantly reduced, and IL-10 levels were significantly increased. Proteomics analysis demonstrated the number of differentially expressed proteins after TMAO administration. In vitro study suggested that the atherogenic effect of TMAO could be attributed to changes in CD36, transmembrane protein 106a, apolipoprotein C1, macrophage scavenger receptor types I and II, and alpha-2-macroglobulin. CONCLUSION: Geraniin might be an effective prospective drug against cardiovascular diseases, and the gut microbiota is a potential target to reduce the risk of atherosclerotic disease.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Glucosídeos , Taninos Hidrolisáveis , Metilaminas , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S
6.
Int J Cardiol ; 364: 162-168, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35705168

RESUMO

BACKGROUND: Cholesterol crystals (CCs) are regular microstructures found within the necrotic core of atherosclerotic plaques and have been hypothesized to be related to plaque destabilization. We attempted to investigate the potential association between CCs and non-culprit plaque vulnerability in patients with ST-segment elevated myocardial infarction (STEMI) and study morphological features of CCs in ruptured non-culprit plaques. METHODS: A total of 261 patients with ST-segment elevation myocardial infarction who underwent 3-vessel optical coherence tomography (OCT) imaging were included. Non-culprit plaques were divided into two groups according to the presence or absence of CCs in the plaque to compare the morphological characteristics of the plaques. The differences in parameters of the non-culprit plaque CCs were explored between ruptured plaques and unruptured plaques. RESULTS: Totally, 530 non-culprit plaques (29 ruptured plaques and 501 unruptured plaques) were identified by OCT. The incidence of CCs was 21.1%. Compared with non-culprit plaques without CCs, those with CCs had a larger lipid burden. Macrophages (p < 0.001) and spotty calcification (p = 0.002) were more frequently observed in non-culprit plaques with CCs. The frequency of CCs was significantly higher (p = 0.001) and the CCs were larger (p = 0.046) and more superficial (p = 0.005) in ruptured non-culprit plaques than in unruptured non-culprit plaques. The maximum lipid arc and fibrous cap thickness were independent predictors of plaque rupture, but the presence of CCs was not. CONCLUSIONS: Non-culprit plaques with CCs have more vulnerable features. CCs are more frequently found in ruptured non-culprit plaques and larger and more superficial CCs are associated with plaque rupture.


Assuntos
Placa Aterosclerótica , Infarto do Miocárdio com Supradesnível do Segmento ST , Colesterol , Angiografia Coronária , Vasos Coronários/diagnóstico por imagem , Humanos , Lipídeos , Placa Aterosclerótica/complicações , Placa Aterosclerótica/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Tomografia de Coerência Óptica/métodos
7.
Epigenomics ; 13(2): 99-112, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406894

RESUMO

Aim: To identify differential mRNA and ncRNA expression profiles and competing endogenous RNA-associated regulatory networks during the progression of atherosclerosis (AS). Materials & methods: We systematically analyzed whole-transcriptome sequencing of samples from different stages of AS to evaluate their long noncoding RNA (lncRNA), circular RNA (circRNA), miRNA and mRNA profiles. Results: We constructed three AS-related competing endogenous RNA regulatory networks of differentially expressed circRNAs, lncRNAs, miRNAs and mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that the circRNAs in the network were enriched in lipid metabolic processes and participated in the PPAR signaling pathway. Furthermore, lncRNAs were related to receptor activity, myofibrils and cardiovascular system development. Conclusion: The current findings further clarified the regulatory mechanisms at different stages of AS and may provide new ideas and targets for AS.


Assuntos
Aterosclerose/genética , Redes Reguladoras de Genes/genética , MicroRNAs/genética , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcriptoma/genética , Animais , Aterosclerose/patologia , Biologia Computacional , Ontologia Genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética
8.
Front Cardiovasc Med ; 8: 642751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796572

RESUMO

Background and Aims: Acute coronary syndrome (ACS) is a group of clinical syndromes characterized by rupture or erosion of atherosclerotic unstable plaques. Effective intervention for vulnerable plaques (VP) is of great significance to reduce adverse cardiovascular events. Methods: Fbn1C1039G+/- mice were crossbred with LDLR-/- mice to obtain a novel model for atherosclerotic VP. After the mice were fed with a high-fat diet (HFD) for 12 or 24 weeks, pathological staining and immunohistochemistry analyses were employed to evaluate atherosclerotic lesions. Results: Compared to control mice, Fbn1C1039G+/-LDLR-/- mice developed more severe atherosclerotic lesions, and the positive area of oil red O staining in the aortic sinus was significantly increased after 12 weeks (21.7 ± 2.0 vs. 6.3 ± 2.1) and 24 weeks (32.6 ± 2.5 vs. 18.7 ± 2.6) on a HFD. Additional vulnerable plaque characteristics, including significantly larger necrotic cores (280 ± 19 vs. 105 ± 7), thinner fiber caps (14.0 ± 2.8 vs. 32.6 ± 2.7), apparent elastin fiber fragmentation and vessel dilation (3,010 ± 67 vs. 1,465 ± 49), a 2-fold increase in macrophage number (8.5 ± 1.0 vs. 5.0 ± 0.6), obviously decreased smooth muscle cell number (0.6 ± 0.1 vs. 2.1 ± 0.2) and an ~25% decrease in total collagen content (33.6 ± 0.3 vs. 44.9 ± 9.1) were observed in Fbn1C1039G+/-LDLR-/- mice compared with control mice after 24 weeks. Furthermore, spontaneous plaque rupture, neovascularization, and intraplaque hemorrhage were detected in the model mouse plaque regions but not in those of the control mice. Conclusions: Plaques in Fbn1C1039G+/-LDLR-/- mice fed a HFD show many features of human advanced atherosclerotic unstable plaques. These results suggest that the Fbn1C1039G+/-LDLR-/- mouse is a novel model for investigating the pathological and physiological mechanisms of advanced atherosclerotic unstable plaques.

9.
Front Genet ; 11: 530, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547599

RESUMO

Atherosclerosis is mediated by various factors and plays an important pathological foundation for cardiovascular and cerebrovascular diseases. Abnormal vascular smooth muscle cells (VSMCs) proliferation and migration have an essential role in atherosclerotic lesion formation. Circular RNAs (circRNA) have been widely detected in different species and are closely related to various diseases. However, the expression profiles and molecular regulatory mechanisms of circRNAs in VSMCs are still unknown. We used high-throughput RNA-seq as well as bioinformatics tools to systematically analyze circRNA expression profiles in samples from different VSMC phenotypes. Polymerase chain reaction (PCR), Sanger sequencing, and qRT-PCR were performed for circRNA validation. A total of 22191 circRNAs corresponding to 6273 genes (host genes) in the platelet-derived growth factor (PDGF-BB) treated group, the blank control group or both groups, were detected, and 112 differentially expressed circRNAs were identified between the PDGF-BB treated and control groups, of which 59 were upregulated, and 53 were downregulated. We selected 9 circRNAs for evaluation of specific head-to-tail splicing, and 10 differentially expressed circRNAs between the two groups for qRT-PCR validation. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses enrichment analyses revealed that the parental genes of the circRNAs mainly participated in cardiac myofibril assembly and positive regulation of DNA-templated transcription, indicating that they might be involved in cardiovascular diseases. Finally, we constructed a circRNA-miRNA network based on the dysregulated circRNAs and VSMC-related microRNAs. Our study is the first to show the differential expression of circRNAs in PDGF-BB-induced VSMCs and may provide new ideas and targets for the prevention and therapy of vascular diseases.

10.
J Cardiovasc Med (Hagerstown) ; 20(8): 518-524, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30889077

RESUMO

AIMS: This study aimed to investigate the progression and vascular shrinkage of vulnerable plaque lesions with a plaque burden at least 70% among patients with coronary artery disease by optical coherence tomography (OCT) and intravascular ultrasound (IVUS). METHODS: Fifty-six OCT-identified vulnerable plaques from 47 patients were included among coronary angiography-identified nonculprit/nontarget lesions. Serial IVUS images were used to assess plaque progression and vascular shrinkage. RESULTS: Thirty-five small vulnerable plaques (plaque burden <70%, group A) and 21 large vulnerable plaques (plaque burden ≥70%, group B) were identified. The IVUS results at baseline show that mean plaque areas (P < 0.001) and the percentage atheroma volume (PAV) (P < 0.0001) were greater and the minimal lumen area (P < 0.0001) was smaller in group B. The absolute and relative changes in the PAV and mean plaque area from baseline to follow-up were not significantly different. However, the lesions exhibited vessel shrinkage [the mean external elastic membrane (EEM) area (P = 0.02) and mean lumen area (P = 0.03) were significantly smaller in group B] from baseline to follow-up. Patients in group B also exhibited clinical events (recurrent angina symptoms) during the follow-up period. Positive correlations were found between changes in the mean plaque area and the mean EEM area in large vulnerable plaques (r = 0.61, P < 0.0001) and between changes in the mean EEM area and the mean lumen area in large vulnerable plaques (r = 0.61, P < 0.0001). CONCLUSION: Vulnerable plaque progression was not different between small and large vulnerable plaques. However, large vulnerable plaque lesions tended to exhibit vascular shrinkage, which is possible a cause of coronary artery lumen loss in patients with large vulnerable plaques.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Placa Aterosclerótica , Tomografia de Coerência Óptica , Ultrassonografia de Intervenção , Angiografia Coronária , Progressão da Doença , Feminino , Fibrose , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Recidiva , Ruptura Espontânea , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA