Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
J Am Chem Soc ; 146(26): 17624-17628, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38889210

RESUMO

Due to the highly chemically inert nature, direct activation and transformation of dinitrogen are challenging. Here, we disclose the synthesis, isolation, and derivatization of (N2)3- supported by lutetium complex. Initially, a (N2)3- radical, in [{(C5Me5){MeC(NiPr)2}Lu}2(µ2-η2:η2-N2)][K(crypt)] (crypt = 2,2,2-cryptand) complex, was generated through the reduction of neutral lutetium dinitrogen complex [{(C5Me5){MeC(NiPr)2}Lu}2(µ2-η2:η2-N2)] with potassium metal. Subsequently, the reaction of (N2)3- complex with methyl triflate (or triflic acid) led to the formation of an N-C (or N-H) bond, yielding the corresponding [{(C5Me5){MeC(NiPr)2}Lu}2(NN-R)(OTf)][K(crypt)] (R = Me, H, OTf = CF3SO3) as the product. Both electron paramagnetic resonance spectroscopy and density functional theory analyses support the radical character of the NN-Me unit. The Lu-N bonds in the (NN-Me)•2- radical complex are predominantly ionic, with 77% of the unpaired electron localized on the (NN-Me) fragment. Moreover, the geometry of the pure organic radical (NN-Me)•2-, optimized by double-hybrid density functional theory, closely matches that of the (NN-Me)•2- lutetium complex.

2.
Acc Chem Res ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937752

RESUMO

ConspectusThe activation and functionalization of N2 to form nitrogen-element bonds have long posed challenges to industrial, biological, and synthetic chemists. The first transition-metal dinitrogen complex prepared by Allen and Senoff in 1965 provoked researchers to explore homogeneous N2 fixation. Despite intensive research in the last six decades, efficient and quantitative conversion of N2 to diazenido and hydrazido species remains problematic. Relative to a plethora of reactions to generate N2 complexes, their functionalization reactions are rather rare, and the yields are often unsatisfactory, emphasizing the need for systematic investigations of the reaction mechanisms.In this Account, we summarize our recent work on the synthesis, spectroscopic features, electronic structures, and reactivities of several Cr-N2 complexes. Initially, a series of dinuclear and trinuclear Cr(I)-N2 complexes bearing cyclopentadienyl-phosphine ligands were accessed. However, they cannot achieve N2 functionalization but undergo oxidative addition reactions with phenylsilane, azobenzene, and other unsaturated organic compounds at the low-valent Cr(I) centers rather than at the N2 unit. Further reduction of these Cr(I) complexes leads to the formation of more activated mononuclear Cr(0) bis-dinitrogen complexes. Remarkably, silylation of the cyclopentadienyl-phosphine Cr(0)-N2 complex with Me3SiCl afforded the first Cr hydrazido complex. This process follows the distal pathway to functionalize the Nß atom twice, yielding an end-on η1-hydrazido complex, Cr(III)═N-N(SiMe3)2. In contrast, upon substitution of the phosphine ligand in the Cr(0)-N2 complex with a N-heterocyclic carbene (NHC) ligand, the corresponding reaction with Me3SiCl proceeds via the alternating pathway; the silylation occurs at both Nα and Nß atoms and generates a side-on η2-hydrazido complex, Cr(III)(η2-Me3SiN-NSiMe3). Both silylation reactions are inevitably accompanied by the formation of Cr(III) hydrazido complexes and Cr(II) chlorides with a 2:1 ratio. These processes exhibit a peculiar '3-4-2-1' stoichiometry (i.e., treating 3 equiv of Cr(0)-N2 complexes with 4 equiv of Me3SiCl yields 2 equiv of Cr(III) disilyl-hydrazido complexes and 1 equiv of Cr(II) chloride). Upon replacing the monodentate phosphine and/or NHC ligand with a bisphosphine ligand, a monodinitrogen Cr(0) complex, instead of the bis-dinitrogen Cr(0) complexes, is obtained; consequently, the silylation reactions progress via the normal two-electron route, which passes through Cr(II)-N═N-R diazenido species as an intermediate and furnishes [Cr(IV)═N-NR2]+ hydrazido as the final products. More importantly, this type of Cr(0)-N2 complex can be not only silylated but also protonated and alkylated proficiently. All of the second-order reaction rates of the first and second transformations are determined along with the lifetimes of the intervening diazenido species. Based on these findings, we have successfully carried out nearly quantitative preparations of the Cr(IV) hydrazido species with unmixed or hybrid substituents.The studies of Cr-N2 systems provide effective approaches for the activation and functionalization of N2, deepening the understanding of N2 electrophilic attack. We hope that this Account will inspire more discoveries related to the transformation of gaseous N2 to high-value-added nitrogen-containing organic compounds.

3.
Inorg Chem ; 63(12): 5530-5540, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38457482

RESUMO

An N-aryloxide-amidine ligand (1), [ONNO] ligand, integrating phenoxide (PhO-) and amidine ligands through methylene linkers, was employed in actinide chemistry. Upon reaction of the deprotonated ligand with ThCl4(DME)2 in ether, the corresponding dimer complex 2 was obtained. Upon treatment of 2 with KCp* (Cp* = Cp(Me)5) in tetrahydrofuran, the corresponding {[ONNO]ThIVCp*(LiCl)}2 (4) was obtained. In complex 2, the two ArO- arms bonded from the same ligand to different ThIV centers. In contrast, both ArO- arms coordinated to the same metal center in 4. Notably, when a mixture of 2 and bipyridine was treated with one or two equiv of KC8, the [ONNO]ThIV-bipyridyl•̅ radical dimer complex (5) and [ONNO]ThIV-bipyridyl2- dianionic dimer species (6) were obtained, respectively.

4.
Angew Chem Int Ed Engl ; 63(13): e202315386, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38299757

RESUMO

In dinitrogen (N2 ) fixation chemistry, bimetallic end-on bridging N2 complexes M(µ-η1 : η1 -N2 )M can split N2 into terminal nitrides and hence attract great attention. To date, only 4d and 5d transition complexes, but none of 3d counterparts, could realize such a transformation. Likewise, complexes {[Cp*Cr(dmpe)]2 (µ-N2 )}0/1+/2+ (1-3) are incapable to cleave N2 , in contrast to their Mo congeners. Remarkably, cross this series the N-N bond length of the N2 ligand and the N-N stretching frequency exhibit unprecedented nonmonotonic variations, and complexes 1 and 2 in both solid and solution states display rare thermally activated ligand-mediated two-center spin transitions, distinct from discrete dinuclear spin crossovers. In-depth analyses using wave function based ab initio calculations reveal that the Cr-N2 -Cr bonding in complexes 1-3 is distinguished by strong multireference character and cannot be described by solely one electron configuration or Lewis structure, and that all intriguing spectroscopic observations originate in their sophisticate multireference electronic structures. More critical is that such multireference bonding of complexes 1-3 is at least a key factor that contributes to their kinetic inertness toward N2 splitting. The mechanistic understanding is then used to rationalize the disparate reactivity of related 3d M(µ-η1 : η1 -N2 )M complexes compared to their 4d and 5d analogs.

5.
J Am Chem Soc ; 145(13): 7065-7070, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36815758

RESUMO

Isolation of key intermediate complexes in dinitrogen functionalization is crucial for elucidating the mechanistic details and further investigation. Herein, the synthesis and characterization of (µ-η1:η1-N2)(η1-N2)-Cr(I) 3 and (η1-N2)2-Cr(0) complexes 4 supported by Cp* (Cp* = C5Me5) and NHC ligands were reported. Further functionalization of Cr(0)-N2 complex 4 with silyl halides delivered the key intermediates in the alternating pathway, the chromium diazenido complex 5 and the chromium side-on η2-hydrazido complex 6. Protonation of 6 led to the quantitative formation of N2H4. Moreover, the [η2-Me3SiNNSiMe3]2- unit in 6 enabled N-C bond formation reactions with CO2 and tBuNCO, giving the corresponding N,O-chelating hydrazidochromium complexes 7 and 8, respectively.

6.
J Am Chem Soc ; 145(17): 9746-9754, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37067517

RESUMO

Electrophilic functionalization of N2 moieties in metal dinitrogen complexes typically initiates the catalytic synthesis of N-containing molecules directly from N2. Despite intensive research in the last six decades, how to efficiently and even quantitatively convert N2 into diazenido and hydrazido species still poses a great challenge. In this regard, systematic and comprehensive investigations to elucidate the reaction intricacies are of profound significance. Herein, we report a kinetic dissection on the first and second electrophilic functionalization steps of a new Cr0-N2 system with HOTf, MeOTf, and Me3SiOTf. All reactions pass through fleeting diazenido intermediates and furnish long-lived final hydrazido products, and both steps are quantitative conversions at low temperatures. All of the second-order reaction rates of the first and second transformations were determined as well as the lifetimes of the intervening diazenido species. Based on these findings, we succeeded in large-scale and near-quantitative preparation of all hydrazido species.

7.
Inorg Chem ; 62(45): 18641-18648, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37905954

RESUMO

In the domain of N2 activation, hetero-bimetallic dinitrogen complexes are garnering substantial interest due to their potential to induce polarization in nonpolar N2 gas. Herein, we present the syntheses and characterizations of three novel hetero-multimetallic dinitrogen complexes: Cp*Cr(depe)N2V(depe)Me[O, P, O] 5, Cp*Cr(depe)N2V(depe)Tipp[O, P, O] 6, and [Cp*Cr(depe)N2]2TiTipp[O, P, O] 7. These complexes were synthesized via a transmetalation process involving the treatment of [Cr0-N2]- complex 4 with vanadium and titanium chloride complexes bearing alkyl or aryl substituted bis(o-hydroxyphenyl)-phenyl phosphine R[O, P, O] ligand (alkyl = methyl, aryl = 2,4,6-tri-isopropylbenzene). X-ray analysis shows that complexes 5 and 6 exhibit heterodinuclear structures, while complex 7 exhibits a heterotrinuclear core with two N2 ligands concurrently coordinated to two chromium and one titanium atoms. Raman spectroscopic data show that the N-N stretching vibration of the N2 moiety is clearly downshifted relative to free N2 and to mononuclear [Cr0-N2]- complex 4.

8.
Angew Chem Int Ed Engl ; 62(19): e202219298, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36897477

RESUMO

Through the synergies of a heterogeneous synthetic approach and a homogeneous synthetic methodology, N-containing organic compounds can be synthesized via activated N-containing species prepared from N2 gas and suitable carbon sources. From N2 , carbon, and LiH, we have previously succeeded in the high-yield preparation of Li2 CN2 as the activated N-containing species. In this work, we applied Li2 CN2 as a novel synthetic synthon for constructing N-containing organic compounds. A series of reaction models, including a substitution reaction, cycloaddition reaction, and transition metal-catalyzed coupling reaction, were successfully performed using Li2 CN2 under mild conditions. Various valuable cyanamides, carbodiimides, N-aryl cyanamides and 1,2,4-triazole derivatives were readily synthesized in moderate to excellent yields. With this method, the 15 N-labeled products, including oxazolidine derivatives with anti-cancer activity, could also be facilely prepared from 15 N2 gas.

9.
J Am Chem Soc ; 144(31): 14071-14078, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35882019

RESUMO

Splitting of N2 via six-electron reduction and further functionalization to value-added products is one of the most important and challenging chemical transformations in N2 fixation. However, most N2 splitting approaches rely on strong chemical or electrochemical reduction to generate highly reactive metal species to bind and activate N2, which is often incompatible with functionalizing agents. Catalytic and sustainable N2 splitting to produce metal nitrides under mild conditions may create efficient and straightforward methods for N-containing organic compounds. Herein, we present that a readily available and nonredox (n-Bu)4NBr can promote N2-splitting with a Mo(III) platform. Both experimental and theoretical mechanistic studies suggest that simple X- (X = Br, Cl, etc.) anions could induce the disproportionation of MoIII[N(TMS)Ar]3 at the early stage of the catalysis to generate a catalytically active {MoII[N(TMS)Ar]3}- species. The quintet MoII species prove to be more favorable for N2 fixation kinetically and thermodynamically, compared with the quartet MoIII counterpart. Especially, computational studies reveal a distinct heterovalent {MoII-N2-MoIII} dimeric intermediate for the N≡N triple bond cleavage.


Assuntos
Elétrons , Molibdênio , Catálise , Molibdênio/química
10.
Acc Chem Res ; 54(9): 2323-2333, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33849276

RESUMO

ConspectusThe concept of aromaticity is one of the most fundamental principles in chemistry. It is generally accepted that planarity is a prerequisite for aromaticity, and typically the more planar the geometry of an aromatic compound is, the stronger aromatic it is. However, it is not always the case, particularly when transition metals are involved in conjugation and electron delocalization of aromatic systems, i.e., metalla-aromatics. Because of the intrinsic nature of transition-metal orbitals, besides planar geometries, the most stable molecular structures of metalla-aromatic compounds could take nonplanar and even spiro geometries. In this Account, we outline several unprecedented types of metalla-aromatics developed recently in our research group.Around seven years ago, we found that 1,4-dilithio-1,3-butadienes, dilithio reagents with π-conjugation, could function as non-innocent ligands and react with low-valent transition-metal complexes, generating monocyclic metalla-aromatic compounds. Later on, by taking advantage of the unique behavior of dilithio reagents and the intrinsic nature of different transition metals, we have synthesized a series of metalla-aromatic compounds, of which four types are discussed here, and each of them represents the first of its kind. First, nearly planar aromatic dicupra[10]annulenes, a 10 π-electron aromatic system with two bridging Cu atoms participating in the orbital conjugation and electron delocalization, are synthesized by annulating two dilithio reagents with two Cu(I) complexes.Second, four kinds of spiro metalla-aromatics, featuring planar (with Pd, Pt, or Rh as the spiro atom) geometry with a whole 10π aromatic system, octahedral (tris-spiro metalla-aromatics with V as the spiro atom) geometry with an entire 40π Craig-Möbius aromatic system, tetrahedral (with Mn as the spiro atom) geometry having two independent and perpendicular 6π planar aromatic rings, and tetrahedral (with Mn as the spiro atom) geometry with one planar and one nonplanar 6π aromatic rings, respectively, are generated. In sharp contrast to spiroaromaticity with carbon acting as the spiro atom described in Organic Chemistry, the metal spiro atom herein takes part in orbital conjugation and electron delocalization.Third, nonplanar aromatic butadienyl diiron complexes are realized. Different from planar aromatic systems featuring delocalized π-type overlap, this nonplanar metalla-aromaticity is achieved by the novel σ-type overlap between the two Fe 3dxz orbitals and the butadienyl π orbital, forming a 6π aromatic system. Fourth, dinickelaferrocene, a ferrocene analogue with two aromatic nickeloles, is synthesized from our monocyclic aromatic dilithionickelole and FeBr2. The aromaticity of dinickelaferrocene and its nickelole ligands is realized by electron back-donation from the Fe 3d orbital to the π* orbital of nickeloles, which also deepens our understanding of the origin of aromaticity.The search for unprecedented and exciting aromatic systems, particularly with transition metals being involved, will continue to drive this intriguing research field forward. Given the synthetic strategies and various types of metalla-aromatics developed and described, diversified metalla-aromatics of interesting structures and reaction chemistry, novel chemical bonding modes, and useful functions can be expected.

11.
Chemistry ; 28(67): e202202803, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36259370

RESUMO

By applying the potassium salts of cyclopentadienyl-phosphine ligands LK to CoCl2 , the corresponding cobalt chlorides (1, LCoII Cl) were prepared. By reducing complexes 1 with KHBEt3 under a N2 atmosphere, bridging end-on complexes, LCoI -N2 -CoI L (2 a and 2 b), were successfully obtained. 15 N2 -labeled [15 N2 ]-2 a was prepared under 15 N2 /14 N2 exchange in THF solution. LCoI -N2 -CoI L complex 2 a could react with P4 molecules to release N2 and generate a Co-P4 -Co moiety 4. Further reduction of complex 2 b led to cleavage of a P-C bond in the cyclopentadienyl-phosphine ligand to provide novel µ-PCy2 -bridged Co0 -N2 complex 5. DFT calculations confirmed the experimental observations.


Assuntos
Nitrogênio , Fosfinas , Modelos Moleculares , Nitrogênio/química , Fosfinas/química , Cobalto/química , Ligantes
12.
Inorg Chem ; 60(3): 1315-1319, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33443994

RESUMO

New kinds of diradical rare-earth metal complexes supported by diazabutadiene (DAD) ligands, [(DAD)2LnN(TMS)2] (1; Ln = Dy, Lu; TMS = SiMe3), were synthesized and studied. They showed a new [radical-Ln-radical] alignment with distorted square-pyramidal geometry. Structural and density functional theory analysis illustrated the radical anionic nature of the ligands. Magnetic studies revealed antiferromagnetic coupling of the two radicals in 1-Lu. 1-Dy showed typical single-molecule-magnet (SMM) behavior with an effective energy barrier of 231 K, which is much higher than those of similar radical-containing SMMs. Magnetostructural analysis suggests that the anionic [N(TMS)2]- group plays a vital role in the SMM property. This study provides a new platform for further improving the performance of radical-Ln SMMs.

13.
Chem Soc Rev ; 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32658233

RESUMO

Carbodiimides are a unique class of heterocumulene compounds that display distinctive chemical properties. The rich chemistry of carbodiimides has drawn increasing attention from chemists in recent years and has made them exceedingly useful compounds in modern organic chemistry, especially in the synthesis of N-heterocycles. This review has outlined the extensive application of carbodiimides in the synthesis of N-heterocycles from the 1980s to today. A wide range of reactions for the synthesis of various types of N-heterocyclic systems (three-, four-, five-, six-, seven-, larger-membered and fused heterocycles) have been developed on the basis of carbodiimides and their derivatives.

14.
Molecules ; 26(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34641351

RESUMO

Copper-catalyzed and organocopper-involved reactions are of great significance in organic synthesis. To have a deep understanding of the reaction mechanisms, the structural characterizations of organocopper intermediates become indispensable. Meanwhile, the structure-function relationship of organocopper compounds could advance the rational design and development of new Cu-based reactions and organocopper reagents. Compared to the mono-carbonic ligand, the C,N- and C,C-bidentate ligands better stabilize unstable organocopper compounds. Bidentate ligands can chelate to the same copper atom via η2-mode, forming a mono-cupra-cyclic compounds with at least one acute C-Cu-C angle. When the bidentate ligands bind to two copper atoms via η1-mode at each coordinating site, the bimetallic macrocyclic compounds will form nearly linear C-Cu-C angles. The anionic coordinating sites of the bidentate ligand can also bridge two metals via µ2-mode, forming organocopper aggregates with Cu-Cu interactions and organocuprates with contact ion pair structures. The reaction chemistry of some selected organocopper compounds is highlighted, showing their unique structure-reactivity relationships.

15.
J Am Chem Soc ; 142(24): 10705-10714, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32408744

RESUMO

While reduction reactions are ubiquitous in chemistry, it is very challenging to further reduce electron-rich compounds, especially the anionic ones. In this work, the reduction of 1,3-butadienyl dianion, the anionic conjugated olefin, has been realized by divalent rare-earth metal compounds (SmI2), resulting in the formation of novel 2-butene tetraanion bridged disamarium(III) complexes. Density functional theory (DFT) analyses reveal two features: (i) the single electron transfer (SET) from 4f atomic orbitals (AOs) of each Sm center to the antibonding π*-orbitals of 1,3-butadienyl dianion is feasible and the new HOMO formed by the bonding interaction between Sm 5d orbitals (AOs) and the π*-orbitals of 1,3-butadienyl dianion can accept favorably 2e- from 4f AOs of Sm(II); (ii) the 2-butene tetraanionic ligand serves as a unique 10e- donating system, in which 4e- act as two σ-donation bonding interactions while the rest 6e- as three π-donation bonding interactions. The disamarium(III) complexes represent a unique class of the bridged bis-alkylidene rare-earth organometallic complexes. The ligand-based reductive reactivity of 2-butene tetraanion bridged disamarium(III) complexes demonstrates that 2-butene tetraanionic ligand serves as a 3e- reductant toward cyclooctatetraene (COT) to provide doubly COT-supported disamarabutadiene complexes. The reaction of the disamarium(III) complexes with Cp*Li produces the doubly Cp*-coordinated Sm(III) complexes via salt metathesis. In addition, the reaction with Mo(CO)6 affords the oxycyclopentadienyl dinuclear complex via CO insertion.

16.
Chemistry ; 26(69): 16472-16479, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32875626

RESUMO

Transition-metal alkylidenes have exhibited wide applications in organometallic chemistry and synthetic organic chemistry, however, cyclic Schrock-carbene-like bis-alkylidenes of group 4 metals with a four-electron donor from an alkylidene have not been reported. Herein, the synthesis and characterization of five-membered cyclic bis-alkylidenes of titanium (4 a,b) and zirconium (5 a,b) are reported, as the first well-defined group 4 metallacyclopentatrienes, by two-electron reduction of their corresponding titana- and zirconacyclopentadienes. DFT analyses of 4 a show a four-electron donor (σ-donation and π-donation) from an alkylidene carbon to the metal center. The reaction of 4 a with N,N'-diisopropylcarbodiimide (DIC) leads to the [2+2]-cycloaddition product 6. Compound 4 a reacted with CO, affording the oxycyclopentadienyl titanium complex 7. These reactivities demonstrate the multiple metal-carbon bond character. The reactions of 4 a or 5 a with cyclooctatetraene (COT) or azobenzene afforded sandwich titanium complex 8 or diphenylhydrazine-coordinated zirconacyclopentadiene 9, respectively, which exhibit two-electron reductive ability.

17.
Angew Chem Int Ed Engl ; 59(23): 8868-8872, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32133711

RESUMO

Benzene, a common aromatic compound, can be converted into an unstable antiaromatic 8π-electron intermediate through two-electron reduction. However, as an isoelectronic equivalent of benzene, borazine (B3 N3 Ph6 ), having weak aromaticity, undergoes a totally different two-electron reduction to afford (B3 N3 R6 )2- homoaromatic compounds. Reported here is the synthesis of homoaromatic (B3 N3 Ph6 )2- by the reduction of B3 N3 Ph6 with either potassium or rubidium in the presence of 18-crown-6 ether. Theoretical investigations illustrate that two electrons delocalize over the three boron atoms in (B3 N3 Ph6 )2- , which is formed by the geometric and orbital reorganization and exhibits (π,σ)-mixed homoaromaticity. Moreover, (B3 N3 Ph6 )2- can act as a robust 2e reductant for unsaturated compounds, such as anthracene, chalcone, and tanshinones. This 2e reduction is of high efficiency and selectivity, proceeds under mild reaction conditions, and can regenerate neutral borazine.

18.
Angew Chem Int Ed Engl ; 59(34): 14394-14398, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32510800

RESUMO

The first example of ferrocene analogues with two transition-metal metallole ligands of the general formula (η5 -C4 R4 M)2 Fe in a sandwich structure are reported. Specifically, dinickelaferrocene 2, a type of dimetallametallocene, is efficiently synthesized from the reaction of dilithionickelole 1 with FeBr2 or FeCl2 , presumably via a redox process, and is subjected to detailed experimental (single-crystal X-ray structural analysis, ICP-OES, magnetometry, 57 Fe Mössbauer, XPS) and theoretical (MOs, CDA, NICS, ICSS, and AICD) characterizations. Unlike ferrocene and its Cp ligands, the aromaticity of dinickelaferrocene and its nickelole ligands is accomplished by electron back-donation from the Fe 3d orbitals to the π* orbitals of nickelole. Taken together, this work describes a new class of metallaferrocene sandwich complexes and provides a novel approach to effect aromaticity that will contribute to further development of metallocene chemistry.

19.
Angew Chem Int Ed Engl ; 59(43): 19048-19053, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32686269

RESUMO

A new class of nonplanar metalla-aromatics, diiron complexes bridged by a 1,3-butadienyl dianionic ligand, were synthesized in high yields from dilithio reagents and two equivalents of FeBr2 . The complexes consist of two antiferromagnetically coupled high-spin FeII centers, as revealed by magnetometry, Mössbauer spectroscopy, and DFT calculations. Furthermore, experimental (X-ray structural analysis) and theoretical analyses (NICS, ICSS, AICD, MOs) suggest that the complexes are aromatic. Remarkably, this nonplanar metalla-aromaticity is achieved by an uncommon σ-type overlap between the ligand p and metal d orbitals, in sharp contrast to the intensively studied planar aromatic systems featuring delocalized π-type bonding. Specifically, the σ-type interaction between the two Fe 3dxz orbitals and the butadienyl π orbital results in the formation of a six-electron conjugated system and hence enables the aromatic character.

20.
J Am Chem Soc ; 141(51): 20547-20555, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31801021

RESUMO

Although transition metallacyclopropenes have been extensively explored for more than 40 years, their analogues of rare-earth metals have remained elusive. Herein, we report the synthesis of three isolable scandacyclopropenes, thus representing the first well-defined rare-earth metallacyclopropenes. Structural characterization and DFT calculations revealed a delocalized three-center two-electron (3c-2e) aromatic system. When scandacyclopropenes were treated with phenylacetylene or TMSN3, the scandium complex of bis-phenylacetylide or bis-azide was obtained, respectively. The reaction of scandacyclopropene with phenazine could provide the binuclear ring-opening scandium complex via 1,4-insertion of phenazine into one Sc-C bond and subsequent metathesis reaction. However, insertion of TMSNCO or N2O into one Sc-C bond of scandacyclopropenes gave a five- or six-membered scandacycle. In addition, scandacyclopropenes can serve as a two-electron reductive agent for PhSSPh and PhNNPh. These results show that scandacyclopropenes exhibit diversified and unique reactivity toward small molecules because of the strongly nucleophilic alkenediyl dianion and highly strained three-membered ring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA