Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nature ; 604(7905): 266-272, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418636

RESUMO

Quantum geometric properties of Bloch wave functions in solids, that is, Berry curvature and the quantum metric, are known to significantly influence the ground- and excited-state behaviour of electrons1-5. The bulk photovoltaic effect (BPVE), a nonlinear phenomenon depending on the polarization of excitation light, is largely governed by the quantum geometric properties in optical transitions6-10. Infrared BPVE has yet to be observed in graphene or moiré systems, although exciting strongly correlated phenomena related to quantum geometry have been reported in this emergent platform11-14. Here we report the observation of tunable mid-infrared BPVE at 5 µm and 7.7 µm in twisted double bilayer graphene (TDBG), arising from the moiré-induced strong symmetry breaking and quantum geometric contribution. The photoresponse depends substantially on the polarization state of the excitation light and is highly tunable by external electric fields. This wide tunability in quantum geometric properties enables us to use a convolutional neural network15,16 to achieve full-Stokes polarimetry together with wavelength detection simultaneously, using only one single TDBG device with a subwavelength footprint of merely 3 × 3 µm2. Our work not only reveals the unique role of moiré engineered quantum geometry in tunable nonlinear light-matter interactions but also identifies a pathway for future intelligent sensing technologies in an extremely compact, on-chip manner.


Assuntos
Grafite , Elétrons , Análise Espectral
2.
Nat Mater ; 23(3): 339-346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37580367

RESUMO

The unique physics in moiré superlattices of twisted or lattice-mismatched atomic layers holds great promise for future quantum technologies. However, twisted configurations are thermodynamically unfavourable, making accurate twist angle control during growth implausible. While rotationally aligned, lattice-mismatched moirés such as WSe2/WS2 can be synthesized, they lack the critical moiré period tunability, and their formation mechanisms are not well understood. Here, we report the thermodynamically driven van der Waals epitaxy of moirés with a tunable period from 10 to 45 nanometres, using lattice mismatch engineering in two WSSe layers with adjustable chalcogen ratios. Contrary to conventional epitaxy, where lattice-mismatch-induced stress hinders high-quality growth, we reveal the key role of bulk stress in moiré formation and its unique interplay with edge stress in shaping the moiré growth modes. Moreover, the superlattices display tunable interlayer excitons and moiré intralayer excitons. Our studies unveil the epitaxial science of moiré synthesis and lay the foundations for moiré-based technologies.

3.
Nano Lett ; 22(15): 6186-6193, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900257

RESUMO

Twisted bilayer graphene (t-BLG) has recently been introduced as a rich physical platform displaying flat electronic bands, strongly correlated states, and unconventional superconductivity. Studies have hinted at an unusual Z2 topology of the moiré Dirac bands of t-BLG. However, direct experimental evidence of this moiré band topology and associated edge states is still lacking. Herein, using superconducting quantum interferometry, we reconstructed the spatial supercurrent distribution in t-BLG Josephson junctions and revealed the presence of edge states located in the superlattice band gaps. The absence of edge conduction in high resistance regions just outside the superlattice band gap confirms that the edge transport originates from the filling of electronic states located inside the band gap and further allows us to exclude several other edge conduction mechanisms. These results confirm the unusual moiré band topology of twisted bilayer graphene and will stimulate further research to explore its consequences.

4.
Phys Rev Lett ; 129(17): 177401, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36332259

RESUMO

Two-dimensional organic-inorganic hybrid perovskites (2DHPs) are natural quantum-well-like materials, in which strong quantum and dielectric confinement effects due to the organic spacers give rise to tightly bound excitons with large binding energy. To examine the mutual interactions between the organic spacer cations and the inorganic charge-residing octahedral framework in 2DHPs, here we perform femtosecond pump-probe spectroscopy by direct vibrational pumping of the organic spacers, followed by a visible-to-ultraviolet probe covering their excitonic resonances. Measurements on prototypical lead-bromide based 2DHP compounds, (BA)_{2}PbBr_{4} and (BA)_{2}(FA)Pb_{2}Br_{7} (BA^{+}=butylammonium; FA^{+}=formamidinium), reveal two distinct regimes of the temporal response. The first regime is dominated by a pump-induced transient expansion of the organic spacer layers that reduces the exciton oscillator strength, whereas the second regime arises from pump-induced lattice heating effects primarily associated with a spectral shift of the exciton energy. In addition, vibrational excitation enhances the biexciton emission, which we attribute to a stronger intralayer exciton confinement as well as vibrationally induced exciton detrapping from defect states. Our study provides fundamental insights regarding the impact of organic spacers on excitons in 2DHPs, as well as the excited-state dynamics and vibrational energy dissipation in these structurally diverse materials.

5.
Chem Rev ; 120(13): 6197-6246, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32496053

RESUMO

Recently, two rich and exciting research fields, layered two-dimensional (2D) materials and metamaterials, have started overlapping. Metamaterials are artificial, engineered materials with broad metaphotonic prospects such as negative refraction, perfect lensing, subwavelength imaging, and cloaking. The possibility of achieving metaphotonic properties using metamaterials based on layered 2D materials has been extensively exploited. Because they are highly tunable and adjustable with the ease of micro- and nanofabrication, 2D materials exhibit diverse optical properties such as natural negative refraction, natural anisotropic behavior, and even hyperbolic dispersion. A combination of 2D materials with conventional metamaterials promises a variety of prospective applications. In this review, we illustrate how the concept of metamaterials and their associated metaphotonic capabilities are naturally born in 2D materials. The multifunctionality of 2D materials may enable the manufacture of novel optical devices that work in a broad frequency range, from visible to terahertz, with particularly low loss, high speed, gated tunability, and miniaturized sizes. This new area of research links the fields of photonics, optoelectronics, and plasmonics with that of metamaterials and may provide insights to future innovations for 2D-material-inspired metaphotonic devices.

6.
Nano Lett ; 21(19): 8385-8392, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34606292

RESUMO

The microbolometer is the cornerstone device for imaging in the long-wavelength infrared range (LWIR) at room temperature. The state-of-the-art commercial microbolometers usually have a large thermal time constant (TTC) of over 10 ms, limited by their substantial device heat capacity. Moreover, the minimal pixel size of state-of-the-art bolometer is around 10 µm by 10 µm to ensure sufficient power absorption per pixel. Here, we demonstrate an ultrafast silicon nanomembrane microbolometer with a small heat capacity of around 1.9 × 10-11J/K, which allows for its operation at a speed of over 10 kHz, corresponding to a TTC of less than 16 µs. Moreover, a compact diabolo antenna is leveraged for efficient LWIR light absorption, enabling the downscaling of the active area size to 6.2 µm by 6.2 µm. Because of the complementary metal oxide semiconductor (CMOS)-compatible fabrication processes, our demonstration here may lead to a future high-resolution and high-speed LWIR imaging solution.


Assuntos
Semicondutores , Silício , Raios Infravermelhos , Óxidos
7.
Nat Mater ; 19(8): 830-837, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32632282

RESUMO

Semimetals are being explored for their unique advantages in low-energy high-speed photodetection, although they suffer from serious drawbacks such as an intrinsically high dark current. In this Perspective, we envision the exploitation of topological effects in the photoresponse of these materials as a promising route to circumvent these problems. We overview recent studies on photodetection based on graphene and other semimetals, and further discuss the opportunities created by topological effects, along with the additional challenges that they impose on photodetector designs.

8.
Nano Lett ; 20(8): 6076-6083, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32692566

RESUMO

Recently twisted bilayer graphene (t-BLG) has emerged as a strongly correlated physical platform. Besides the apparent significance of band flatness, band topology may be another critical element in t-BLG and yet receives much less attention. Here we report the compelling evidence for nontrivial noninteracting Moiré band topology in t-BLG through a systematic nonlocal transport study and a K-theory examination. The nontrivial topology manifests itself as two pronounced nonlocal responses in the electron and hole superlattice gaps. We show that the nonlocal responses are robust to the twist angle and edge termination, exhibiting a universal scaling law. We elucidate that, although Berry curvature is symmetry-trivialized, two nontrivial Z2 invariants characterize the Moiré Dirac bands, validating the topological origin of the observed nonlocal responses. Our findings not only provide a new perspective for understanding the strongly correlated t-BLG but also suggest a potential strategy to achieve topological metamaterials from trivial vdW materials.

9.
Phys Rev Lett ; 125(25): 259901, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416404

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.121.057404.

10.
Nano Lett ; 19(3): 1488-1493, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30721622

RESUMO

Recently rediscovered layered black phosphorus (BP) provides rich opportunities for investigations of device physics and applications. The band gap of BP is widely tunable by its layer number and a vertical electric field, covering a wide electromagnetic spectral range from visible to mid-infrared. Despite much progress in BP optoelectronics, the fundamental photoluminescence (PL) properties of thin-film BP in mid-infrared have rarely been investigated. Here, we report bright PL emission from thin-film BP (with thickness of 4.5 to 46 nm) from 80 to 300 K. The PL measurements indicate a band gap of 0.308 ± 0.003 eV in 46 nm thick BP at 80 K, and it increases monotonically to 0.334 ± 0.003 eV at 300 K. Such an anomalous blueshift agrees with the previous theoretical and photoconductivity spectroscopy results. However, the observed blueshift of 26 meV from 80 to 300 K is about 60% of the previously reported value. Most importantly, we show that the PL emission intensity from thin-film BP is only a few times weaker than that of an indium arsenide (InAs) multiple quantum well (MQW) structure grown by molecular beam epitaxy. Finally, we report the thickness-dependent PL spectra in thin-film BP in mid-infrared regime. Our work reveals the mid-infrared light emission properties of thin-film BP, suggesting its promising future in tunable mid-infrared light emitting and lasing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA