Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 170(5): 899-912.e10, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28803727

RESUMO

Microsatellite repeat expansions in DNA produce pathogenic RNA species that cause dominantly inherited diseases such as myotonic dystrophy type 1 and 2 (DM1/2), Huntington's disease, and C9orf72-linked amyotrophic lateral sclerosis (C9-ALS). Means to target these repetitive RNAs are required for diagnostic and therapeutic purposes. Here, we describe the development of a programmable CRISPR system capable of specifically visualizing and eliminating these toxic RNAs. We observe specific targeting and efficient elimination of microsatellite repeat expansion RNAs both when exogenously expressed and in patient cells. Importantly, RNA-targeting Cas9 (RCas9) reverses hallmark features of disease including elimination of RNA foci among all conditions studied (DM1, DM2, C9-ALS, polyglutamine diseases), reduction of polyglutamine protein products, relocalization of repeat-bound proteins to resemble healthy controls, and efficient reversal of DM1-associated splicing abnormalities in patient myotubes. Finally, we report a truncated RCas9 system compatible with adeno-associated viral packaging. This effort highlights the potential of RCas9 for human therapeutics.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Terapia Genética/métodos , Oligonucleotídeos Antissenso/farmacologia , Animais , Células COS , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Repetições de Microssatélites , Splicing de RNA , Expansão das Repetições de Trinucleotídeos
2.
Mol Cell ; 68(3): 479-490.e5, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056323

RESUMO

Transcription of expanded microsatellite repeats is associated with multiple human diseases, including myotonic dystrophy, Fuchs endothelial corneal dystrophy, and C9orf72-ALS/FTD. Reducing production of RNA and proteins arising from these expanded loci holds therapeutic benefit. Here, we tested the hypothesis that deactivated Cas9 enzyme impedes transcription across expanded microsatellites. We observed a repeat length-, PAM-, and strand-dependent reduction of repeat-containing RNAs upon targeting dCas9 directly to repeat sequences; targeting the non-template strand was more effective. Aberrant splicing patterns were rescued in DM1 cells, and production of RAN peptides characteristic of DM1, DM2, and C9orf72-ALS/FTD cells was drastically decreased. Systemic delivery of dCas9/gRNA by adeno-associated virus led to reductions in pathological RNA foci, rescue of chloride channel 1 protein expression, and decreased myotonia. These observations suggest that transcription of microsatellite repeat-containing RNAs is more sensitive to perturbation than transcription of other RNAs, indicating potentially viable strategies for therapeutic intervention.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleases/metabolismo , Terapia Genética/métodos , Repetições de Microssatélites , Distrofia Miotônica/terapia , Transcrição Gênica , Processamento Alternativo , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Antígeno CD24/genética , Antígeno CD24/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Regulação para Baixo , Ativação Enzimática , Feminino , Vetores Genéticos , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos Transgênicos , Mioblastos/metabolismo , Mioblastos/patologia , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , RNA Guia de Cinetoplastídeos/biossíntese , RNA Guia de Cinetoplastídeos/genética , Transdução Genética , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo
3.
Am J Pathol ; 188(3): 728-738, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29246495

RESUMO

A common form of hereditary autosomal dominant demyelinating neuropathy known as Charcot-Marie-Tooth disease type 1A (CMT1A) is linked with duplication of the peripheral myelin protein 22 (PMP22) gene. Although studies from animal models have led to better understanding of the pathobiology of these neuropathies, there continues to be a gap in the translation of findings from rodents to humans. Because PMP22 was originally identified in fibroblasts as growth arrest specific gene 3 (gas3) and is expressed broadly in the body, it was tested whether skin cells from neuropathic patients would display the cellular pathology observed in Schwann cells from rodent models. Dermal fibroblasts from two CMT1A pedigrees with confirmed PMP22 gene duplication were studied. Samples from age-matched non-neuropathic individuals were used as controls. CMT1A patient-derived cultures contain approximately 1.5-fold elevated levels of PMP22 mRNA, exhibit reduced mitotic potential, and display intracellular protein aggregates as compared to cells from unaffected individuals. The presence of cytosolic PMP22 coincides with a decrease in proteasome activity and an increase in autophagy-lysosomal proteins, including LC3-II and LAMP1. These results indicate that the abnormalities in the subcellular processing of excess PMP22 elicit a detectable response in human CMT1A fibroblasts, a phenotype that resembles Schwann cells from neuropathic mice. These findings support the use of human CMT1A fibroblasts as a platform for therapy testing.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Fibroblastos/metabolismo , Proteínas da Mielina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Pele/metabolismo , Adolescente , Adulto , Proliferação de Células/fisiologia , Doença de Charcot-Marie-Tooth/patologia , Fibroblastos/patologia , Duplicação Gênica , Humanos , Pessoa de Meia-Idade , Pele/patologia , Adulto Jovem
4.
Cerebellum ; 18(3): 519-526, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30830673

RESUMO

Cerebellar degenerative pathology has been identified in tremor patients; however, how the degenerative pathology could contribute to tremor remains unclear. If the cerebellar degenerative pathology can directly drive tremor, one would hypothesize that tremor is likely to occur in the diseases of cerebellar ataxia and follows the disease progression in such disorders. To further test this hypothesis, we studied the occurrence of tremor in different disease stages of classical cerebellar degenerative disorders: spinocerebellar ataxias (SCAs). We further separately analyzed postural tremor and rest tremor, two forms of tremor that both involve the cerebellum. We also explored tremor in different subtypes of SCAs. We found that 18.1% of SCA patients have tremor. Interestingly, SCA patients with tremor have worse ataxia than those without tremor. When stratifying patients into mild, moderate, and severe disease stages according to the severity of ataxia, moderate and severe SCA patients more commonly have tremor than those with mild ataxia, the effect most prominently observed in postural tremor of SCA3 and SCA6 patients. Finally, tremor can independently contribute to worse functional status in SCA2 patients, even after adjusting for ataxia severity. Tremor is more likely to occur in the severe stage of cerebellar degeneration when compared to mild stages. Our results partially support the cerebellar degenerative model of tremor.


Assuntos
Cerebelo/patologia , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/patologia , Tremor/etiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tremor/epidemiologia
5.
Mol Ther ; 26(11): 2617-2630, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30274788

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by a CTG nucleotide repeat expansion within the 3' UTR of the Dystrophia Myotonica protein kinase gene. In this study, we explored therapeutic genome editing using CRISPR/Cas9 via targeted deletion of expanded CTG repeats and targeted insertion of polyadenylation signals in the 3' UTR upstream of the CTG repeats to eliminate toxic RNA CUG repeats. We found paired SpCas9 or SaCas9 guide RNA induced deletion of expanded CTG repeats. However, this approach incurred frequent inversion in both the mutant and normal alleles. In contrast, the insertion of polyadenylation signals in the 3' UTR upstream of the CTG repeats eliminated toxic RNA CUG repeats, which led to phenotype reversal in differentiated neural stem cells, forebrain neurons, cardiomyocytes, and skeletal muscle myofibers. We concluded that targeted insertion of polyadenylation signals in the 3' UTR is a viable approach to develop therapeutic genome editing for DM1.


Assuntos
Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , Células-Tronco Neurais/fisiologia , Expansão das Repetições de Trinucleotídeos/genética , Regiões 3' não Traduzidas , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Edição de Genes/métodos , Terapia Genética/métodos , Células HEK293 , Humanos , Músculo Esquelético/crescimento & desenvolvimento , Miócitos Cardíacos/fisiologia , Distrofia Miotônica/patologia , Distrofia Miotônica/terapia , Neurônios/fisiologia , Sinais de Poliadenilação na Ponta 3' do RNA/genética , RNA Guia de Cinetoplastídeos , Transfecção
6.
Neurol Sci ; 40(6): 1255-1265, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30891637

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by CTG nucleotide repeat expansions in the 3'-untranslated region (3'-UTR) of the dystrophia myotonica protein kinase (DMPK) gene. The expanded CTG repeats encode toxic CUG RNAs that cause disease, largely through RNA gain-of-function. DM1 is a fatal disease characterized by progressive muscle wasting, which has no cure. Regenerative medicine has emerged as a promising therapeutic modality for DM1, especially with the advancement of induced pluripotent stem (iPS) cell technology and therapeutic genome editing. However, there is an unmet need to identify in vitro outcome measures to demonstrate the therapeutic effects prior to in vivo clinical trials. In this study, we examined the muscle regeneration (myotube formation) in normal and DM1 myoblasts in vitro to establish outcome measures for therapeutic monitoring. We found normal proliferation of DM1 myoblasts, but abnormal nuclear aggregation during the early stage myotube formation, as well as myotube degeneration during the late stage of myotube formation. We concluded that early abnormal nuclear aggregation and late myotube degeneration offer easy and sensitive outcome measures to monitor therapeutic effects in vitro.


Assuntos
Núcleo Celular/patologia , Núcleo Celular/fisiologia , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/fisiologia , Distrofia Miotônica/patologia , Distrofia Miotônica/fisiopatologia , Regeneração , Proliferação de Células , Células Cultivadas , Humanos , Técnicas In Vitro , Mioblastos/fisiologia
7.
Hum Mol Genet ; 24(5): 1211-24, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25320121

RESUMO

Polyglutamine diseases, including spinocerebellar ataxia type 3 (SCA3), are caused by CAG repeat expansions that encode abnormally long glutamine repeats in the respective disease proteins. While the mechanisms underlying neurodegeneration remain uncertain, evidence supports a proteotoxic role for the mutant protein dictated in part by the specific genetic and protein context. To further define pathogenic mechanisms in SCA3, we generated a mouse model in which a CAG expansion of 82 repeats was inserted into the murine locus by homologous recombination. SCA3 knockin mice exhibit region-specific aggregate pathology marked by intranuclear accumulation of the mutant Atxn3 protein, abundant nuclear inclusions and, in select brain regions, extranuclear aggregates localized to neuritic processes. Knockin mice also display altered splicing of the disease gene, promoting expression of an alternative isoform in which the intron immediately downstream of the CAG repeat is retained. In an independent mouse model expressing the full human ATXN3 disease gene, expression of this alternatively spliced transcript is also enhanced. These results, together with recent findings in other polyglutamine diseases, suggest that CAG repeat expansions can promote aberrant splicing to produce potentially more aggregate-prone isoforms of the disease proteins. This report of a SCA3 knockin mouse expands the repertoire of existing models of SCA3, and underscores the potential contribution of alternative splicing to disease pathogenesis in SCA3 and other polyglutamine disorders.


Assuntos
Processamento Alternativo , Modelos Animais de Doenças , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Ataxina-3 , Sequência de Bases , Linhagem Celular , Éxons , Feminino , Fibroblastos/metabolismo , Técnicas de Introdução de Genes , Loci Gênicos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Regulação para Cima
8.
Ann Neurol ; 80(4): 600-15, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27531668

RESUMO

OBJECTIVE: Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by a CAG repeat expansion in the gene ataxin-2 (ATXN2). ATXN2 intermediate-length CAG expansions were identified as a risk factor for amyotrophic lateral sclerosis (ALS). The ATXN2 CAG repeat is translated into polyglutamine, and SCA2 pathogenesis has been thought to derive from ATXN2 protein containing an expanded polyglutamine tract. However, recent evidence of bidirectional transcription at multiple CAG/CTG disease loci has led us to test whether additional mechanisms of pathogenesis may contribute to SCA2. METHODS: In this work, using human postmortem tissue, various cell models, and animal models, we provide the first evidence that an antisense transcript at the SCA2 locus contributes to SCA2 pathogenesis. RESULTS: We demonstrate the expression of a transcript, containing the repeat as a CUG tract, derived from a gene (ATXN2-AS) directly antisense to ATXN2. ATXN2-AS transcripts with normal and expanded CUG repeats are expressed in human postmortem SCA2 brains, human SCA2 fibroblasts, induced SCA2 pluripotent stem cells, SCA2 neural stem cells, and lymphoblastoid lines containing an expanded ATXN2 allele associated with ALS. ATXN2-AS transcripts with a CUG repeat expansion are toxic in an SCA2 cell model and form RNA foci in SCA2 cerebellar Purkinje cells. Finally, we detected missplicing of amyloid beta precursor protein and N-methyl-D-aspartate receptor 1 in SCA2 brains, consistent with findings in other diseases characterized by RNA-mediated pathogenesis. INTERPRETATION: These results suggest that ATXN2-AS has a role in SCA2 and possibly ALS pathogenesis, and may therefore provide a novel therapeutic target for these diseases. Ann Neurol 2016;80:600-615.


Assuntos
Esclerose Lateral Amiotrófica/genética , Ataxina-2/genética , Ataxias Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos/genética , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais , Adulto Jovem
9.
Cerebellum ; 16(3): 615-622, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27848087

RESUMO

The aim of this study is to determine whether the initial symptom associates with motor progression in spinocerebellar ataxias (SCAs). SCAs are clinically heterogeneous and the initial presentation may represent different subtypes of SCA with different motor progression. We studied 317 participants with SCAs1, 2, 3, and 6 from the Clinical Research Consortium for SCAs (CRC-SCA) and repeatedly measured the severity of ataxia for 2 years. SCA patients were divided into gait-onset and non-gait-onset (speech, vision, and hand dexterity) groups based on the initial presentation. In addition to demographic comparison, we employed regression models to study ataxia progression in these two groups after adjusting for age, sex, and pathological CAG repeats. The majority of SCA patients had gait abnormality as an initial presentation. The pathological CAG repeat expansions were similar between the gait-onset and non-gait-onset groups. In SCA1, gait-onset group progressed slower than non-gait-onset group, while gait-onset SCA6 group progressed faster than their counterpart. In addition, the disease presented 9 years later for SCA2 gait-onset group than non-gait-onset group. Initial symptoms of SCA3 did not influence age of onset or disease progression. The initial symptom in each SCA has a different influence on age of onset and motor progression. Therefore, gait and non-gait-onset groups of SCAs might represent different subtypes of the diseases.


Assuntos
Ataxinas/genética , Ataxia Cerebelar/genética , Ataxias Espinocerebelares/genética , Adulto , Idoso , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Repressoras/genética , Ataxias Espinocerebelares/diagnóstico , Repetições de Trinucleotídeos/genética
10.
Mol Ther ; 24(8): 1378-87, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27203440

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by expanded Cytosine-Thymine-Guanine (CTG) repeats in the 3'-untranslated region (3' UTR) of the Dystrophia myotonica protein kinase (DMPK) gene, for which there is no effective therapy. The objective of this study is to develop genome therapy in human DM1 induced pluripotent stem (iPS) cells to eliminate mutant transcripts and reverse the phenotypes for developing autologous stem cell therapy. The general approach involves targeted insertion of polyA signals (PASs) upstream of DMPK CTG repeats, which will lead to premature termination of transcription and elimination of toxic mutant transcripts. Insertion of PASs was mediated by homologous recombination triggered by site-specific transcription activator-like effector nuclease (TALEN)-induced double-strand break. We found genome-treated DM1 iPS cells continue to maintain pluripotency. The insertion of PASs led to elimination of mutant transcripts and complete disappearance of nuclear RNA foci and reversal of aberrant splicing in linear-differentiated neural stem cells, cardiomyocytes, and teratoma tissues. In conclusion, genome therapy by insertion of PASs upstream of the expanded DMPK CTG repeats prevented the production of toxic mutant transcripts and reversal of phenotypes in DM1 iPS cells and their progeny. These genetically-treated iPS cells will have broad clinical application in developing autologous stem cell therapy for DM1.


Assuntos
Terapia Genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Transplante de Células-Tronco , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Marcação de Genes , Loci Gênicos , Humanos , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Distrofia Miotônica/terapia , Miotonina Proteína Quinase/genética , Poli A , Ligação Proteica , Splicing de RNA , Teratoma/genética , Teratoma/metabolismo , Teratoma/patologia , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Transplante Autólogo , Repetições de Trinucleotídeos
11.
Stem Cells ; 33(6): 1829-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25702800

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by expanded CTG repeats in the 3'-untranslated region (3' UTR) of the DMPK gene. Correcting the mutation in DM1 stem cells would be an important step toward autologous stem cell therapy. The objective of this study is to demonstrate in vitro genome editing to prevent production of toxic mutant transcripts and reverse phenotypes in DM1 stem cells. Genome editing was performed in DM1 neural stem cells (NSCs) derived from human DM1 induced pluripotent stem (iPS) cells. An editing cassette containing SV40/bGH polyA signals was integrated upstream of the CTG repeats by TALEN-mediated homologous recombination (HR). The expression of mutant CUG repeats transcript was monitored by nuclear RNA foci, the molecular hallmarks of DM1, using RNA fluorescence in situ hybridization. Alternative splicing of microtubule-associated protein tau (MAPT) and muscleblind-like (MBNL) proteins were analyzed to further monitor the phenotype reversal after genome modification. The cassette was successfully inserted into DMPK intron 9 and this genomic modification led to complete disappearance of nuclear RNA foci. MAPT and MBNL 1, 2 aberrant splicing in DM1 NSCs were reversed to normal pattern in genome-modified NSCs. Genome modification by integration of exogenous polyA signals upstream of the DMPK CTG repeat expansion prevents the production of toxic RNA and leads to phenotype reversal in human DM1 iPS-cells derived stem cells. Our data provide proof-of-principle evidence that genome modification may be used to generate genetically modified progenitor cells as a first step toward autologous cell transfer therapy for DM1.


Assuntos
Genoma Humano , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Associadas aos Microtúbulos/metabolismo , Distrofia Miotônica/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Pluripotentes/citologia , Humanos , Distrofia Miotônica/patologia , Fenótipo
12.
Histochem Cell Biol ; 143(6): 557-64, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25715678

RESUMO

Nuclear RNA foci are molecular hallmarks of myotonic dystrophy type 1 (DM1). However, no designated study has investigated their formation and changes in proliferating cells. Proliferating cells, as stem cells, consist of an important cellular pool in the human body. The revelation of foci changes in these cells might shed light on the effects of the mutation on these specific cells and tissues. In this study, we used human DM1 iPS-cell-derived neural stem cells (NSCs) as cellular models to investigate the formation and dynamic changes of RNA foci in proliferating cells. Human DM1 NSCs derived from human DM1 iPS cells were cultured under proliferation conditions and nonproliferation conditions following mitomycin C treatment. The dynamic changes of foci during the cell cycle were investigated by fluorescence in situ hybridization. We found RNA foci formed and dissociated during the cell cycle. Nuclear RNA foci were most prominent in number and size just prior to entering mitosis (early prophase). During mitosis, most foci disappeared. After entering interphase, RNA foci accumulated again in the nuclei. After stopping cell dividing by treatment of mitomycin C, the number of nuclear RNA foci increased significantly. In summary, DM1 NSC nuclear RNA foci undergo dynamic changes during cell cycle, and mitosis is a mechanism to decrease foci load in the nuclei, which may explain why dividing cells are less affected by the mutation. The dynamic changes need to be considered when using foci as a marker to monitor the effects of therapeutic drugs.


Assuntos
RNA/metabolismo , Ciclo Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Hibridização in Situ Fluorescente , Mitomicina/farmacologia , Mitose , RNA/efeitos dos fármacos , RNA/genética
13.
Mov Disord ; 30(2): 214-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25449974

RESUMO

The aim of this study was to investigate the association between drug exposure and disease severity in SCA types 1, 2, 3 and 6. The Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA) enrolled 319 participants with SCA1, 2, 3, and 6 from 12 medical centers in the United States and repeatedly measured clinical severity by the Scale for Assessment and Rating of Ataxia (SARA), the Unified Huntington's Disease Rating Scale part IV (UHDRS-IV), and the 9-item Patient Health Questionnaire during July 2009 to May 2012. We employed generalized estimating equations in regression models to study the longitudinal effects of coenzyme Q10 (CoQ10), statin, and vitamin E on clinical severity of ataxia after adjusting for age, sex, and pathological CAG repeat number. Cross-sectionally, exposure to CoQ10 was associated with lower SARA and higher UHDRS-IV scores in SCA1 and 3. No association was found between statins, vitamin E, and clinical outcome. Longitudinally, CoQ10, statins, and vitamin E did not change the rates of clinical deterioration indexed by SARA and UHDRS-IV scores within 2 years. CoQ10 is associated with better clinical outcome in SCA1 and 3. These drug exposures did not appear to influence clinical progression within 2 years. Further studies are warranted to confirm the association.


Assuntos
Ataxias Espinocerebelares/tratamento farmacológico , Ubiquinona/análogos & derivados , Adulto , Idade de Início , Idoso , Progressão da Doença , Feminino , Humanos , Doença de Huntington/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Ataxias Espinocerebelares/diagnóstico , Inquéritos e Questionários , Resultado do Tratamento , Ubiquinona/uso terapêutico
14.
J Neuroophthalmol ; 35(1): 16-21, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25259863

RESUMO

BACKGROUND: Ocular motor abnormalities reflect the varied neuropathology of spinocerebellar ataxias (SCAs) and may serve to clinically distinguish the different SCAs. We analyzed the various eye movement abnormalities detected prospectively at the baseline visit during a large multicenter natural history study of SCAs 1, 2, 3, and 6. METHODS: The data were prospectively collected from 12 centers in the United States in patients with SCAs 1, 2, 3, and 6, as part of the Clinical Research Consortium for Spinocerebellar Ataxias (NIH-CRC-SCA). Patient characteristics, ataxia rating scales, the Unified Huntington Disease Rating Scale functional examination, and clinical staging were used. Eye movement abnormalities including nystagmus, disorders of saccades and pursuit, and ophthalmoparesis were recorded, and factors influencing their occurrence were examined. RESULTS: A total of 301 patients participated in this study, including 52 patients with SCA 1, 64 with SCA 2, 117 with SCA 3, and 68 with SCA 6. Although no specific ocular motor abnormality was pathognomonic to any SCA, significant differences were noted in their occurrence among different disorders. SCA 6 was characterized by frequent occurrence of nystagmus and abnormal pursuit and rarity of slow saccades and ophthalmoparesis and SCA 2 by the frequent occurrence of slow saccades and infrequent nystagmus and dysmetric saccades. SCA 1 and SCA 3 subjects had a more even distribution of eye movement abnormalities. CONCLUSIONS: Prospective data from a large cohort of patients with SCAs 1, 2, 3, and 6 provide statistical validation that the SCAs exhibit distinct eye movement abnormalities that are useful in identifying the genotypes. Many of the abnormalities correlate with greater disease severity measures.


Assuntos
Transtornos da Motilidade Ocular/diagnóstico , Transtornos da Motilidade Ocular/etiologia , Ataxias Espinocerebelares/complicações , Adulto , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Índice de Gravidade de Doença , Ataxias Espinocerebelares/classificação , Ataxias Espinocerebelares/genética , Estados Unidos
16.
J Neurol ; 271(7): 3743-3753, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822840

RESUMO

BACKGROUND: The Scale for Assessment and Rating of Ataxia (SARA) is a widely used clinical scale to assess cerebellar ataxia but faces some criticisms about the relevancy of all its items. OBJECTIVES: To prepare for future clinical trials, we analyzed the progression of SARA and its items in several polyQ spinocerebellar ataxias (SCA) from various cohorts. METHODS: We included data from patients with SCA1, SCA2, SCA3, and SCA6 from four cohorts (EUROSCA, RISCA, CRC-SCA, and SPATAX) for a total of 850 carriers and 3431 observations. Longitudinal progression of the SARA and its items was measured. Cohort, stage and genetic effects were tested. We looked at the respective contribution of each item to the total scale. Sensitivity to change of the scale and the impact of item removal was evaluated by calculating sample sizes needed in various scenarios. RESULTS: Longitudinal progression was significantly different between cohorts in SCA1, SCA2 and SCA3, the EUROSCA cohort having the fastest progression. Advanced-stage patients were progressing slower in SCA2 and SCA6. Items were not contributing equally to the full scale through ataxia severity: gait, stance, hand movement, and heel-shin contributed the most in the early stage, and finger-chase, nose-finger, and sitting in later stages. Few items drove the sensitivity to the change of SARA, but changes in the scale structure could not improve its sensitivity in all populations. CONCLUSION: SARA and its item's progression pace showed high heterogeneity across cohorts and SCAs. However, no combinations of items improved the responsiveness in all SCAs or populations taken separately.


Assuntos
Progressão da Doença , Índice de Gravidade de Doença , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/fisiopatologia , Pessoa de Meia-Idade , Masculino , Feminino , Adulto , Estudos de Coortes , Estudos Longitudinais , Idoso
18.
J Neurosci Res ; 90(3): 706-14, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22065565

RESUMO

Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurodegenerative disorder manifested by ataxia and seizure. SCA10 is caused by a large expansion of an intronic ATTCT pentanucleotide repeat in the ATXN10 gene. We have recently postulated a toxic RNA-mediated gain of function in the pathogenesis of spinal cerebellar ataxia type 10 (SCA10). The spliced intron-9 RNA containing the expanded AUUCU repeat aggregates in SCA10 cells and sequesters hnRNP K. hnRNP K sequestration triggers the translocation of protein kinase Cδ (PKCδ) to mitochondria, leading to activation of caspase-3 and apoptosis. To confirm the toxic RNA-mediated gain of function, we generated a new transgenic mouse model in which the expanded pentanucleotide repeats are constructed in the 3'-untranslated region (3'UTR) to ensure transcription without translation of the repeat. We constructed an artificial transgene containing the SCA10 (ATTCT)(500) track within the 3'UTR of the LacZ gene driven by the rat prion promoter (PrP) and used this to generate a new transgenic mouse model for SCA10. We then examined these mice for neurological phenotypes and histopathological, molecular, and cellular changes. The transgenic mice showed irregular gait and increased seizure susceptibility at the age of 6 months, resembling the clinical phenotype of SCA10. The cerebral cortex, hippocampus, and pontine nuclei showed neuronal loss. The brains of these animals also showed molecular and cellular changes similar to those previously found in an SCA10 cell model. Expression of the expanded SCA10 AUUCU repeat within the 3'UTR of a gene results in neuronal loss with associated gait abnormalities and increased seizure susceptibility phenotypes, which resemble those seen in SCA10 patients. Moreover, these results bolster the idea that the SCA10 disease mechanism is mediated by a toxic RNA gain-of-function mutation of the expanded AUUCU repeat.


Assuntos
Proteínas de Transporte/genética , Marcha/genética , Repetições de Microssatélites , Atividade Motora/genética , Convulsões/genética , Animais , Ataxina-10 , Proteínas de Transporte/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , RNA/genética , RNA/metabolismo , Convulsões/metabolismo
19.
Neurotherapeutics ; 18(3): 1710-1728, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34160773

RESUMO

CAG repeat expansion is the genetic cause of nine incurable polyglutamine (polyQ) diseases with neurodegenerative features. Silencing repeat RNA holds great therapeutic value. Here, we developed a repeat-based RNA-cleaving DNAzyme that catalyzes the destruction of expanded CAG repeat RNA of six polyQ diseases with high potency. DNAzyme preferentially cleaved the expanded allele in spinocerebellar ataxia type 1 (SCA1) cells. While cleavage was non-allele-specific for spinocerebellar ataxia type 3 (SCA3) cells, treatment of DNAzyme leads to improved cell viability without affecting mitochondrial metabolism or p62-dependent aggresome formation. DNAzyme appears to be stable in mouse brain for at least 1 month, and an intermediate dosage of DNAzyme in a SCA3 mouse model leads to a significant reduction of high molecular weight ATXN3 proteins. Our data suggest that DNAzyme is an effective RNA silencing molecule for potential treatment of multiple polyQ diseases.


Assuntos
DNA Catalítico/administração & dosagem , DNA Catalítico/genética , Doença de Machado-Joseph/genética , Peptídeos/genética , RNA/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Ataxina-3/genética , Linhagem Celular Tumoral , Inativação Gênica/fisiologia , Células HEK293 , Humanos , Doença de Machado-Joseph/terapia , Camundongos , Peptídeos/metabolismo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Técnicas Estereotáxicas
20.
Front Genet ; 11: 594576, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362853

RESUMO

Cas13a, an effector of type VI CRISPR-Cas systems, is an RNA guided RNase with multiplexing and therapeutic potential. This study employs the Leptotrichia shahii (Lsh) Cas13a and a repeat-based CRISPR RNA (crRNA) to track and eliminate toxic RNA aggregates in myotonic dystrophy type 1 (DM1) - a neuromuscular disease caused by CTG expansion in the DMPK gene. We demonstrate that LshCas13a cleaves CUG repeat RNA in biochemical assays and reduces toxic RNA load in patient-derived myoblasts. As a result, LshCas13a reverses the characteristic adult-to-embryonic missplicing events in several key genes that contribute to DM1 phenotype. The deactivated LshCas13a can further be repurposed to track RNA-rich organelles within cells. Our data highlights the reprogrammability of LshCas13a and the possible use of Cas13a to target expanded repeat sequences in microsatellite expansion diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA