Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(18): 5420-5428, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38666707

RESUMO

Artificial intelligence has surged forward with the advent of generative models, which rely heavily on stochastic computing architectures enhanced by true random number generators with adjustable sampling probabilities. In this study, we develop spin-orbit torque magnetic tunnel junctions (SOT-MTJs), investigating their sigmoid-style switching probability as a function of the driving voltage. This feature proves to be ideally suited for stochastic computing algorithms such as the restricted Boltzmann machines (RBM) prevalent in pretraining processes. We exploit SOT-MTJs as both stochastic samplers and network nodes for RBMs, enabling the implementation of RBM-based neural networks to achieve recognition tasks for both handwritten and spoken digits. Moreover, we further harness the weights derived from the preceding image and speech training processes to facilitate cross-modal learning from speech to image generation. Our results clearly demonstrate that these SOT-MTJs are promising candidates for the development of hardware accelerators tailored for Boltzmann neural networks and other stochastic computing architectures.

2.
Nat Commun ; 15(1): 2077, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453947

RESUMO

Ultrastrong and deep-strong coupling are two coupling regimes rich in intriguing physical phenomena. Recently, hybrid magnonic systems have emerged as promising candidates for exploring these regimes, owing to their unique advantages in quantum engineering. However, because of the relatively weak coupling between magnons and other quasiparticles, ultrastrong coupling is predominantly realized at cryogenic temperatures, while deep-strong coupling remains to be explored. In our work, we achieve both theoretical and experimental realization of room-temperature ultrastrong magnon-magnon coupling in synthetic antiferromagnets with intrinsic asymmetry of magnetic anisotropy. Unlike most ultrastrong coupling systems, where the counter-rotating coupling strength g2 is strictly equal to the co-rotating coupling strength g1, our systems allow for highly tunable g1 and g2. This high degree of freedom also enables the realization of normalized g1 or g2 larger than 0.5. Particularly, our experimental findings reveal that the maximum observed g1 is nearly identical to the bare frequency, with g1/ω0 = 0.963, indicating a close realization of deep-strong coupling within our hybrid magnonic systems. Our results highlight synthetic antiferromagnets as platforms for exploring unconventional ultrastrong and even deep-strong coupling regimes, facilitating the further exploration of quantum phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA