Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med ; 22(1): 220, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816882

RESUMO

BACKGROUND: The patterns of blood pressure (BP) change throughout the pregnancy were related to adverse birth outcomes. However, little is known about the long-term effect of BP change patterns on child neurodevelopment. This study aimed to explore the relationship between the BP trajectory and BP variability during pregnancy and early childhood neurodevelopment. METHOD: A total of 2797 mother-newborn pairs were derived from the Wuhan Healthy Baby Cohort Study. BP was measured during each antenatal visit, and Mental and Psychomotor Development Indexes (MDI and PDI) were assessed using the Bayley Scales of Infant Development (BSID) when the children were 2 years old. Delayed neurodevelopment was defined as scores of PDI or MDI less than - 1SD relative to the mean score of the study population. A group-based multi-trajectory model was adopted to identify multi-trajectories of systolic blood pressure (SBP) and diastolic blood pressure (DBP). Visit-to-visit BP variability was assessed by the coefficient of variation (CV), standard deviation (SD), and average real variability (ARV). Generalized linear models and multivariate logistic regressions were used to assess the associations of BP trajectories and variability with BSID scores and delayed neurodevelopment, respectively. RESULTS: Five distinct trajectories for SBP and DBP were identified, namely, "Low-increasing," "Low-stable," "Moderate-decreasing," "Moderate-increasing," and "High-stable" groups. Compared with the "Low-stable" group, the children whose mothers' BP fell into the other four groups had lower PDI scores, and mothers in the "Low-increasing," "Moderate-increasing," and "Moderate-decreasing" groups had 43% (OR: 1.43, 95% CI: 1.01, 2.03), 48% (OR: 1.48, 95% CI: 1.05, 2.08) and 45% (OR:1.45, 95% CI: 1.03, 2.04) higher risk of having offspring with delayed psychomotor neurodevelopment, respectively. High DBP variability was associated with lower BSID scores, and delayed psychomotor neurodevelopment (OR = 1.46, 95% CI: 1.10, 1.92 for DBP-SD; OR = 1.53, 95% CI: 1.16, 2.02 for DBP-CV). CONCLUSION: Our findings suggest that BP change patterns assessed by multi-trajectory and visit-to-visit variability were associated with lower BSID scores and delayed neurodevelopment. Health professionals should be aware of the influence of BP level and its oscillations during pregnancy on the risk of delayed neurodevelopment.


Assuntos
Pressão Sanguínea , Desenvolvimento Infantil , Humanos , Feminino , Pressão Sanguínea/fisiologia , Gravidez , Pré-Escolar , Desenvolvimento Infantil/fisiologia , Masculino , Adulto , Recém-Nascido , Lactente , Estudos de Coortes , Efeitos Tardios da Exposição Pré-Natal
2.
Angew Chem Int Ed Engl ; : e202408653, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819994

RESUMO

Multi-excitonic emitting materials in luminescent metal halides are emerging candidates for anti-counterfeiting and information encryption applications. Herein, ATPP2SnCl6 (ATPP = acetonyltriphenylphosphonium) phase was designed and synthesized by rationally choosing emissive organic reagent of ATPPCl and non-toxic stable metal ions of Sn4+, and Sb3+ was further doped into ATPP2SnCl6 to tune the photoluminescence with external self-trapped excitons emission. The derived non-toxic ATPP2SnCl6 shows multi-excitonic luminescent centers verified by optical study and differential charge-density from density functional theory calculations. Incorporation of Sb3+ dopants and the increasing concentrations induce the efficient energy transfer therein, thus enhancing photoluminescence quantum yield from 5.1% to 73.8%. The multi-excitonic emission inspires the creation of information encryption and decryption by leveraging the photoluminescence from ATPPCl to ATPP2SnCl6 host and ATPP2SnCl6:Sb3+. This study facilitates the anti-counterfeiting application by employing solution-processable luminescent metal halides materials with excitation-dependent PL properties.

3.
Angew Chem Int Ed Engl ; 63(18): e202401716, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38372050

RESUMO

High-capacity Ni-rich layered oxides are promising cathode materials for fabrication of lithium-ion batteries (LIBs) with high energy density. However, thermal runaway of LIBs with these cathodes leads to great safety concerns. In this study, single crystalline LiNi0.9Co0.05Mn0.05O2 (NCM-SC) has been prepared and a flexible optical fiber was buried inside the pouch-type LIBs with NCM-SC cathode to in situ study its real-time temperature evolution during charge/discharge process. NCM-SC exhibits an enhanced Li+ ions transportation efficiency and electrode reaction kinetics, which can effectively reduce the generation of polarization heat and mitigate the internal temperature rise of the pouch-type battery. Meanwhile, solid-electrolyte interface (SEI) film decomposition and gas accumulation are effectively alleviated, due to the enhanced thermal stability of SEI film formed on NCM-SC. Moreover, the single crystal architecture can effectively retard layered to spinal and rock-salt phase transition, mitigate the crack formation and structural collapse. Consequently, NCM-SC exhibits an excellent electrochemical performance and enhanced thermal stability.

4.
Angew Chem Int Ed Engl ; 63(15): e202400760, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38348737

RESUMO

Achieving tunable emissions spanning the spectrum, from blue to near-infrared (NIR) light, within a single component is a formidable challenge with significant implication, particularly in tailoring multicolor luminescence for anti-counterfeiting purposes. In this study, we demonstrate a broad spectrum of emissions, covering blue to red and extending into NIR light in [BPy]2CdX4 : xSb3+ (BPy=Butylpyridinium; X=Cl, Br; x=0 to 0.08) through precise multisite structural fine-tuning. Notably, the multicolor emissions from [BPy]2CdBr4 : Sb3+ manifest a distinctive pattern, transitioning from blue to yellow in tandem with the host [BPy]2CdBr4 and further extending from yellow to NIR with its homologous [BPy]2CdCl4 : Sb3+, resulting in the simultaneous presence of intersecting and independent emission colors. Detailed modulation of chemical composition enables partial luminescence switching, facilitating the creation of diverse patterns with multicolor luminescence by employing [BPy]2CdX4 : xSb3+ as phosphors. This study for the first time successfully implements several groups of tunable emission colors in a single matrix via multisite fine-tuning. Such an effective strategy not only develops the specific relationships between tunable emissions and adjustable compositions, but also introduces a cost-effective and straightforward approach to achieving unique, high-level, plentiful-color and multiple-information-storage labels for advanced anti-counterfeiting applications.

5.
Opt Lett ; 48(5): 1296-1299, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857272

RESUMO

Near-infrared (NIR) phosphor-converted light-emitting diodes (pc-LEDs) have demonstrated great potential for optoelectronic and biomedical applications, while the exploration of NIR phosphors with high thermal stability remains a challenge. Herein, we report an NIR phosphor KAl11O17:Fe3+ with zero thermal quenching (TQ) behavior up to 200°C. The asymmetrical broadband NIR emission with three sub-bands centered at 700, 770, and 800 nm is related to the superposition of different Fe3+ emission centers located in Al2O4, Al3O6, and Al4O6 sites of the KAl11O17 host, respectively. Temperature- and Fe3+ concentration-dependent emission spectra verify that the energy transfer (ET) between multiple Fe3+ emitters and the weak electron-phonon coupling (EPC) effect contribute to the thermally stable broadband NIR emission. The fabricated NIR pc-LED using optimized KAl11O17:Fe3+ phosphor exhibits great potential in information encryption applications.

6.
Chem Soc Rev ; 50(4): 2626-2662, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399145

RESUMO

Zero-dimensional (0D) all-inorganic/organic-inorganic metal halides, as emerging luminescent materials, have attracted unparalleled interest from versatile perspectives due to their unique crystallographic/electronic structures with isolated building units and fascinating optical characteristics. However, significant challenges still exist for 0D metal halides, including their chemical molecular design, photoluminescence (PL) mechanism, PL modification and applications. In this review, we summarize the 0D metal halides through the classification of all-inorganic and organic-inorganic hybrid metal halides, and further emphasize the unique role of B-site cations with different electronic configurations in the PL process. Furthermore, the PL mechanisms focusing on the self-trapped excitons (STEs) model and PL regulation engineering are examined to explore their extraordinary PL properties and further reveal new application prospects. This review aims to provide in-depth insight into the structure-luminescence-application relationship of 0D metal halides and pave the way for the realization of next-generation high-performance luminescent materials.

7.
Angew Chem Int Ed Engl ; 61(33): e202208881, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35737598

RESUMO

Zero-dimensional (0D) hybrid metal halides with unique compositional and structural tunability appear as an emerging class of luminescent materials, but near-infrared (NIR) emitters therein are largely unexplored to date. This study presents three novel 0D hybrid antimony chlorines with edge-sharing [Sb2 Cl8 ]2- dimers, showing unusual room-temperature broadband NIR emission with the maximum emission wavelength up to 1070 nm. Photoluminescence studies and density functional theory calculation demonstrate that the emissions originate from the highly localized excitons, and that the confined [Sb2 Cl8 ]2- dimers in these structures show low symmetry and a large degree of structural freedom. These hybrid antimony chlorines with [Sb2 Cl8 ]2- dimers expand the range of new NIR materials in 0D metal halides.

8.
Angew Chem Int Ed Engl ; 61(49): e202212741, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36207278

RESUMO

Zero-dimensional (0D) metal halides have drawn increasing attention due to the attractive structure dependent photoluminescence (PL) properties. Here, we report two new 0D organic-inorganic hybrid Sb-based halides, (MTP)6 SbBr6 Sb2 Br9 ⋅H2 O (MTP=Methyltriphenylphosphonium, crystal 1) and (MTP)2 SbBr5 (crystal 2), featuring a reversible structural phase transformation and tunable orange and red emissions upon dehydration and rehydration of H2 O molecules. Intriguingly, a subsequent heat treatment further enables the formation of glassy state (MTP)2 SbBr5 (glass 3) with near-infrared luminescence, moreover, a sequential reverse phase transformation from glass 3 to crystal 2 and 1 is triggered by acetonitrile and water vapor stepwise. The anti-counterfeiting demo based on the tunable and reversible PL switching is finally achieved and thus the phase structure engineering in 0D metal halides expands their multiple applications in optical fields.

9.
Prev Med ; 146: 106451, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33617865

RESUMO

The associations between socioeconomic status and childhood overweight/obesity are inconsistent, and potential underlying factors are unclear. In China, Hukou status is an important attribute of individual's socioeconomic circumstances, but previously received less consideration as a socioeconomic indicator. This study aimed to investigate the association between comprehensive socioeconomic status and childhood overweight/obesity. Using data from Wuhan Maternal and Child Health Management Information System (2009-2018, N = 209,500), clustering analysis was used to create comprehensive socioeconomic groups with indicator components such as parental education level, occupation, and maternal Hukou. The associations between the determined socioeconomic status and childhood overweight/obesity at age 1 and 2 were examined by log-binomial model. Parallel and serial mediation analyses were performed to test the indirect effects of potential mediators, including maternal pre-pregnancy body mass index, gestational weight gain, and infant birth weight, in the association between socioeconomic status and childhood overweight/obesity. Four clusters, defined as low, low-medium, medium-high, and high socioeconomic groups, were identified through clustering analysis. Hukou, among five socioeconomic components, contributed the most to the development of childhood overweight/obesity. Children in the low-medium socioeconomic group have a greater risk of overweight/obesity than the low socioeconomic group. Indirect effects of maternal pre-pregnancy body mass index, gestational weight gain, and infant birth weight were identified for the association. In conclusion, socioeconomic status may impact childhood obesity through maternal pre-pregnancy body mass index, gestational weight gain, and infant birth weight. Hukou should be considered in the evaluation of socioeconomic status in China.


Assuntos
Obesidade Infantil , Peso ao Nascer , Índice de Massa Corporal , Criança , Pré-Escolar , China/epidemiologia , Feminino , Humanos , Lactente , Sobrepeso/epidemiologia , Obesidade Infantil/epidemiologia , Gravidez , Fatores de Risco , Classe Social
10.
Angew Chem Int Ed Engl ; 60(21): 11592-11603, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33084115

RESUMO

Lead-free halide perovskites have drawn wide attention as alternatives to their toxic and poorly stable lead-based counterparts. Among them, double perovskites with Cs2 AgInCl6 composition, often doped with various elements, have been in the spotlight owing to their intriguing optical properties, namely, self-trapped exciton (STEs) emission and dopant-induced photoluminescence. This interest has sparked different synthesis approaches towards both crystals and nanocrystals, and the exploration of many alloy compositions with mono- and trivalent cations other than Ag+ and In3+ . In this Minireview we describe the recent developments on Cs2 AgInCl6 bulk crystals and nanocrystals, their synthesis strategies, intrinsic optical properties, and tunable photoluminescence originating from different alloying and doping effects. We also discuss progress on computational studies aimed at understanding the thermodynamic stability, the role of defects, and the origin of photoluminescence in relation to the STEs and the direct band gap character.

11.
Angew Chem Int Ed Engl ; 60(5): 2583-2587, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089955

RESUMO

Zero-dimensional (0D) hybrid metal halides are promising light emitters. However, it is still challenging to accurately design their structures with targeted photoluminescence properties. Herein, high pressure is used to change the self-trapped exciton (STE) emission of 0D (bmpy)9 [ZnBr4 ]2 [Pb3 Br11 ] (bmpy: 1-butyl-1-methylpyrrolidinium). Under initial compression, the simultaneous contraction and distortion of photoactive [Pb3 Br11 ]5- vary the equilibrium of STE emissions between different excited states, tuning the emission color from yellow green to cyan. Notably, sufficient structural distortion under continuous compression leads to the formation of more and deeper STE states, exhibiting an unprecedented broadband white-light emission. This study reveals the structure-dependent optical properties of 0D hybrid metal halides, providing novel insights into the mechanism of STE emission.

12.
Inorg Chem ; 59(14): 9962-9968, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32628841

RESUMO

Organic-inorganic hybrid metal halides with broad-band emission are currently receiving an increasing interest for their unique light emission properties. Here we report a novel lead-free zero-dimensional (0D) tin halide, (C8H14N2)2SnBr6, in which isolated [SnBr6]4- octahedrons are cocrystallized with organic cations, 1,3-bis(aminomethyl)benzene (C8H14N22+). Upon photoexcitation, the bulk crystals exhibit broad-band green emission peaking at 507 nm with a full width at half-maximum (fwhm) of 82 nm (0.395 eV), a Stokes shift of 157 nm (1.09 eV), and a photoluminescence quantum yield (PLQY) of 36 ± 4%. Combined structural analysis and density functional theory (DFT) calculations indicate that the excited state structural distortion of [SnBr6]4- octahedral units account for the formation of this green emission. The relatively small Stokes shift and narrow fwhm of the emission are hence caused by the reduced distortion of [SnBr6]4- octahedrons and rigid molecular structure. The discovery of lead-free (C8H14N2)2SnBr6 and insight into the mechanism of green emission provide an essential platform toward unveiling the relationship between structure and property for 0D metal halide perovskites.

13.
Inorg Chem ; 59(2): 1383-1392, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31916435

RESUMO

There is a challenge for noncontact temperature-sensing techniques and the related materials, in which a highly reliable contactless thermometer probe with low cost and high sensitivity is in demand. Here, the Lu3Al5O12:Ce3+/Mn4+ phosphor has been designed and prepared for the high-performance fluorescence temperature-sensing application in a novel one-pot, self-redox, solid-state process. Benefiting from the different electron-lattice/phonon interactions of Ce3+ and Mn4+, two distinguishable emission peaks with significantly different temperature responses originating from Ce3+ and Mn4+ are realized. Applying the fluorescence intensity ratio of Mn4+ versus Ce3+ and the decay lifetime of Mn4+ emission as the temperature readout, a dual-mode optical temperature-sensing mechanism was proposed and studied in the temperature range of 100-350 K. The maximum relative sensitivities (Sr) are derived as 4.37 and 3.22% K-1 respectively, as well as a large chromaticity shift visible to naked eyes (ΔE = 153 × 10-3 in 100-350 K) is observed. This is the first report of a Ce3+,Mn4+ co-doped dual-emitting phosphor, and its unique optical thermometric features demonstrate the high potential of Lu3Al5O12:Ce3+/Mn4+ as an accurate and reliable thermometer probe candidate.

14.
Inorg Chem ; 59(2): 1405-1413, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31894695

RESUMO

The equivalent or heterovalent substitution strategy is an efficient way to stimulate photoluminescence tuning or to optimize the luminescence performances of phosphor materials. Garnet-type compounds receive much attention as phosphor hosts because of their flexible structural frameworks. Herein, a garnet-type Lu2MgAl4SiO12:Eu2+ phosphor with broad-band blue-green emission is first explored with two-site occupation by varying the Eu2+ content. Two host-substitution approaches to controlling the luminescence behavior of Lu2MgAl4SiO12:Eu2+ phosphor are implemented. The cation substitution strategy of Ca2+ for Mg2+ achieves tunable emission from 463 to 503 nm together with broadening emission bands in Lu2Mg1-yCayAl4SiO12:Eu2+ phosphors. Moreover, chemical unit cosubstitution of [Ca2+-Ge4+] replacing [Lu3+-Al3+] results in Lu2-zCazMgAl4-zGezSiO12:Eu2+ phosphors, which induce a red shift of the emission peak of about 60 nm and a broadening in the emission spectra with increasing Ca2+ and Ge4+ concentrations. The possible photoluminescence tuning mechanism is ascribed to the coordination sphere variation in the EuO8 polyhedron depending on the changing neighboring cations. The proposed approaches on equivalent or heterovalent substitution can contribute to the development of Eu2+-activated garnet-type phosphors with regulation of the luminescence performance and further initiate research discovering new phosphors for white-light-emitting diodes.

15.
Angew Chem Int Ed Engl ; 59(28): 11634-11640, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32329132

RESUMO

The incorporation of impurity ions or doping is a promising method for controlling the electronic and optical properties and the structural stability of halide perovskite nanocrystals (NCs). Herein, we establish relationships between rare-earth ions doping and intrinsic emission of lead-free double perovskite Cs2 AgInCl6 NCs to impart and tune the optical performances in the visible light region. Tb3+ ions were incorporated into Cs2 AgInCl6 NCs and occupied In3+ sites as verified by both crystallographic analyses and first-principles calculations. Trace amounts of Bi doping endowed the characteristic emission (5 D4 →7 F6-3 ) of Tb3+ ions with a new excitation peak at 368 nm rather than the single characteristic excitation at 290 nm of Tb3+ . By controlling Tb3+ ions concentration, the emission colors of Bi-doped Cs2 Ag(In1-x Tbx )Cl6 NCs could be continuously tuned from green to orange, through the efficient energy-transfer channel from self-trapped excitons to Tb3+ ions. Our study provides the salient features of the material design of lead-free perovskite NCs and to expand their luminescence applications.

16.
Angew Chem Int Ed Engl ; 59(31): 12938-12943, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32329941

RESUMO

The stability of luminescent materials is a key factor for the practical application in white light-emitting diodes (LEDs). Poor chemical stability of narrow-band green-emitting RbLi(Li3 SiO4 )2 :Eu2+ (RLSO:Eu2+ ) phosphor hinders their further commercialization even if they have excellent stability against thermal quenching. Herein, we propose an efficient protection scheme by combining the surface coating of amorphous Al2 O3 and hydrophobic modification by octadecyltrimethoxysilane (ODTMS) to construct the moisture-resistant dual-shelled RLSO:Eu2+ @Al2 O3 @ODTMS composite. The growth mechanisms of both the Al2 O3 inorganic layer and the silane organic layer on the phosphor surface are investigated. The results remarkably improve the water-stability of this narrow-band green emitter. The evaluation of the white LED by employing this composite as the green component demonstrates that RLSO:Eu2+ @Al2 O3 @ODTMS is a promising candidate for the high-performance display backlights, and this dual-shelled strategy provides an alternative method to improve the moisture-resistant property of humidity-sensitive phosphors.

17.
Inorg Chem ; 58(8): 5006-5012, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30916953

RESUMO

Manipulating the distribution of rare earth activators in multiple cations' sites of phosphor materials is an essential step to obtain tunable emission for the phosphor-converted white-light-emitting diodes (pc-WLEDs). However, it remains the challenge to realize the photoluminescence tuning in the single-phased phosphor with single activator, due to the uncertain location of doped ions and adjustable crystallographic sites. Herein we reported the ß-Ca3(PO4)2-type solid solution phosphors (Ca8.98- xSr x)MgK(PO4)7:2%Eu2+ ( x = 0-8.98) and the effects of replacing Ca2+ by Sr2+ ions on the phase structures and color-tunable emission were investigated in detail. Tunable color emission has been realized by manipulating the redistribution of Eu2+ ions among different cation sites with adjustable chemical environment, and the related mechanism on the local structures has been discussed. The high Ra (85) and low color temperature (CCT) (4465 K) values of the as-fabricated WLEDs lamp indicate that (Ca4.98Sr4)MgK(PO4)7:2%Eu2+ can act as a promising white-emitting phosphor for single-phased pc-WLEDs. This work provides a new insight into the tuning of the compositions and multiple activator sites toward single-phased white emission.

18.
Inorg Chem ; 58(2): 1690-1696, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30600989

RESUMO

All-inorganic halide perovskite (CsPbX3, X = Cl, Br, or I) nanocrystals (NCs) have been widely studied due to their outstanding optoelectronic properties. However, some inevitable factors like light, heat, and moisture affected the stability of CsPbX3 NCs and further limited their practical application. In this work, the stability of all-inorganic halide perovskite NCs can be improved by integrating them in the stable Zr-based metal-organic frameworks (Uio-67). Compared to pristine perovskite NCs, typical CsPbBr3@Uio-67 composites display a stable photoluminescence property that can be maintained for 30 days under ambient atmospheric conditions. Due to the proposed confinement effects of CsPbX3 NCs coordinated with the pore structures of Uio-67, the related structural model of CsPbX3@Uio-67 composites was elucidated. White LED device was further fabricated by combining CsPbBr3@Uio-67 composites and commercial K2SiF6:Mn4+ red phosphors with a blue-emitting chip, which demonstrated a wide color gamut (138% of National Television Standards Committee color space). The strategy on encapsulation of CsPbX3 NCs into Uio-67 will open up a stable platform for optoelectronic applications.

19.
Inorg Chem ; 58(13): 8694-8701, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199628

RESUMO

The Sr3SiO5:Eu2+ phosphor has attracted considerable attention for applications in white LEDs owing to its highly efficient yellow emission under violet-blue excitation. We report herein an enhancement of yellow persistent luminescence in Sr3SiO5:Eu2+ through Ge incorporation. The strongest persistent luminescence intensity is observed for Sr3(Si1- xGe x)O5:Eu2+ with x = 0.005 with a peak emission wavelength at ∼580 nm and a persistent time of ∼7000 s at the 0.32 mcd/m2 threshold value after UV radiation. A combination of thermoluminescence measurements and density functional theory (DFT) calculations reveals that the afterglow enhancement is due to a significant increase in the number of oxygen vacancies that act as electron trapping centers with appropriate trap depths. This investigation is anticipated to encourage more exploration of GeSi substitution to design and improve Si-containing persistent phosphors with superior functionalities.

20.
Inorg Chem ; 58(19): 13464-13470, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31502835

RESUMO

Organic-inorganic hybrid metal halides with zero-dimensional (0D) structure has emerged as a new class of light-emitting materials. Herein, a new lead-free compound (C9NH20)2MnBr4 has been discovered and a temperature-dependent phase transition has been identified for two phases (space group P21/c and C2/c) in which individual [MnBr4]2- anions connect with organic cations, (C9NH20+) (1-buty-1-methylpyrrolidinium+), forming periodic structure with 0D blocks. A green emission band, peaking at 528 nm with a high photoluminescence quantum efficiency (PLQE) of 81.08%, has been observed at room temperature, which is originated from the 4T1(G) to 6A1 transition of tetrahedrally coordinated Mn2+ ions, as also elaborated by density functional theory calculation. Accordingly, a fast, switchable, and highly selective fluorescent sensor platform for different organic solvents based on the luminescence of (C9NH20)2MnBr4 has been developed. We believe that the hybrid metal halides with high PLQE and the exploration of these as a fluorescence sensor will expand the applications scope of bulk 0D materials for future development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA