Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Am Chem Soc ; 136(17): 6187-90, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24735477

RESUMO

A flexible three-dimensional (3-D) nanoporous NiF2-dominant layer on poly(ethylene terephthalate) has been developed. The nanoporous layer itself can be freestanding without adding any supporting carbon materials or conducting polymers. By assembling the nanoporous layer into two-electrode symmetric devices, the inorganic material delivers battery-like thin-film supercapacitive performance with a maximum capacitance of 66 mF cm(-2) (733 F cm(-3) or 358 F g(-1)), energy density of 384 Wh kg(-1), and power density of 112 kW kg(-1). Flexibility and cyclability tests show that the nanoporous layer maintains its high performance under long-term cycling and different bending conditions. The fabrication of the 3-D nanoporous NiF2 flexible electrode could be easily scaled.

2.
Angew Chem Int Ed Engl ; 53(6): 1565-9, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24453109

RESUMO

Bi- and trilayer graphene have attracted intensive interest due to their rich electronic and optical properties, which are dependent on interlayer rotations. However, the synthesis of high-quality large-size bi- and trilayer graphene single crystals still remains a challenge. Here, the synthesis of 100 µm pyramid-like hexagonal bi- and trilayer graphene single-crystal domains on Cu foils using chemical vapor deposition is reported. The as-produced graphene domains show almost exclusively either 0° or 30° interlayer rotations. Raman spectroscopy, transmission electron microscopy, and Fourier-transformed infrared spectroscopy were used to demonstrate that bilayer graphene domains with 0° interlayer stacking angles were Bernal stacked. Based on first-principle calculations, it is proposed that rotations originate from the graphene nucleation at the Cu step, which explains the origin of the interlayer rotations and agrees well with the experimental observations.

3.
Adv Sci (Weinh) ; 11(9): e2307619, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38088526

RESUMO

Asphaltene is often regarded as an undesirable by-product of petroleum processing, possesses vast reserves with little market value. The typical routes of consuming asphaltene, namely burning and landfilling, pose significant environmental challenges. In this study, low-value asphaltene is converted into high-value ethylated carbon clusters (ECC) using a supercritical ethanol technique. The resulting ECC powder demonstrates promising properties for high density polyethylene (HDPE) composite applications. The effects of incorporating ECC on the mechanical, gas barrier, and anti-aging properties of the composite are investigated. Results show that a 1 wt.% ECC led to a 4.2% and 43.5% increase in tensile strength and elongation at break, a reduction of 45.8% and 30.7% in oxygen and carbon dioxide permeability. Furthermore, ECC exhibits effective UV spectrum absorption and conversion in the wavelength range of 400-600 nm, providing protection against UV spectrum damage to HDPE. The incorporation of ECC not only enhances the properties of polymer composites but also sequesters carbon within the polymer matrix, enabling the valorization of asphaltene while mitigating environmental impact.

4.
J Am Chem Soc ; 135(29): 10755-62, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23815279

RESUMO

Precise spatial control of materials is the key capability of engineering their optical, electronic, and mechanical properties. However, growth of graphene on Cu was revealed to be seed-induced two-dimensional (2D) growth, limiting the synthesis of complex graphene spatial structures. In this research, we report the growth of onion ring like three-dimensional (3D) graphene structures, which are comprised of concentric one-dimensional hexagonal graphene ribbon rings grown under 2D single-crystal monolayer graphene domains. The ring formation arises from the hydrogenation-induced edge nucleation and 3D growth of a new graphene layer on the edge and under the previous one, as supported by first principles calculations. This work reveals a new graphene-nucleation mechanism and could also offer impetus for the design of new 3D spatial structures of graphene or other 2D layered materials. Additionally, in this research, two special features of this new 3D graphene structure were demonstrated, including nanoribbon fabrication and potential use in lithium storage upon scaling.

5.
Adv Mater ; 35(25): e2300129, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37078773

RESUMO

As the world is committed to reach carbon peak by 2030 and net zero by 2050, the use of coal as an energy source is facing unprecedented challenges. According to the International Energy Agency (IEA), global annual coal demand is estimated to drop from more than 5640 million tonnes of coal equivalent (Mtce) in 2021 to 540 Mtce in 2050 under the net zero emission scenario, mostly being replaced by renewable energy such as solar and wind. Therefore, the coal industry is vigorously seeking alternative applications to keep it thriving, and nanotechnology can be one of the contributors. Herein, the challenges to coal-based carbon nanomaterials syntheses are outlined, along with a path toward commercialization. Coal-based carbon nanomaterials can be promising contributors to the concept of clean coal conversion, initiating its migration from an energy source to a high-value-added carbon source.

6.
ACS Appl Mater Interfaces ; 7(47): 26063-8, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26551046

RESUMO

Luminescent polymer composite materials, based on poly(vinyl alcohol) (PVA), as a matrix polymer and graphene quantum dots (GQDs) derived from coal, were prepared by casting from aqueous solutions. The coal-derived GQDs impart fluorescent properties to the polymer matrix, and the fabricated composite films exhibit solid state fluorescence. Optical, thermal, and fluorescent properties of the PVA/GQD nanocomposites have been studied. High optical transparency of the composite films (78 to 91%) and excellent dispersion of the nanoparticles are observed at GQD concentrations from 1 to 5 wt %. The maximum intensity of materials photoluminescence has been achieved at 10 wt % GQD content. These materials could be used in light emitting diodes (LEDs), flexible electronic displays, and other optoelectronic applications.

7.
ACS Appl Mater Interfaces ; 7(9): 5281-8, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25671488

RESUMO

Graphene oxide nanoribbon (GONR) made by the oxidative unzipping of multiwalled carbon nanotube was dispersed in dimethylformamide and mixed with polyacrylonitrile (PAN) to fabricate continuous PAN/GONR composite fibers by gel spinning. Subsequently, PAN/GONR composite fibers were stabilized and carbonized in a batch process to fabricate composite carbon fibers. Structure, processing, and properties of the composite precursor and carbon fibers have been studied. This study shows that GONR can be used to make porous precursor and carbon fibers. In addition, GONR also shows the potential to make higher mechanical property carbon fibers than that achieved from PAN precursor only.

8.
ACS Appl Mater Interfaces ; 7(12): 7041-8, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25757413

RESUMO

Bandgaps of photoluminescent graphene quantum dots (GQDs) synthesized from anthracite have been engineered by controlling the size of GQDs in two ways: either chemical oxidative treatment and separation by cross-flow ultrafiltration, or by a facile one-step chemical synthesis using successively higher temperatures to render smaller GQDs. Using these methods, GQDs were synthesized with tailored sizes and bandgaps. The GQDs emit light from blue-green (2.9 eV) to orange-red (2.05 eV), depending on size, functionalities and defects. These findings provide a deeper insight into the nature of coal-derived GQDs and demonstrate a scalable method for production of GQDs with the desired bandgaps.

9.
Adv Mater ; 26(48): 8163-8, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25355037

RESUMO

A simple method to fabricate edge-oriented MoS2 films with sponge-like morphologies is demonstrated. They are directly fabricated through the reaction of sulfur vapor with anodically formed Mo oxide sponge-like films on flexible Mo substrates. The edge-oriented MoS2 film delivers excellent hydrogen evolution reaction (HER) activity with enhanced kinetics and long-term cycling stability. The material also has superior energy-storage performance when working as a flexible, all-solid-state supercapacitor device.

10.
ACS Nano ; 8(9): 9518-23, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25134007

RESUMO

Nanoporous Ni-Co binary oxide layers were electrochemically fabricated by deposition followed by anodization, which produced an amorphous layered structure that could act as an efficient electrocatalyst for water oxidation. The highly porous morphologies produced higher electrochemically active surface areas, while the amorphous structure supplied abundant defect sites for oxygen evolution. These Ni-rich (10-40 atom % Co) binary oxides have an increased active surface area (roughness factor up to 17), reduced charge transfer resistance, lowered overpotential (∼325 mV) that produced a 10 mA cm(-2) current density, and a decreased Tafel slope (∼39 mV decade(-1)). The present technique has a wide range of applications for the preparation of other binary or multiple-metals or metal oxides nanoporous films. Fabrication of nanoporous materials using this method could provide products useful for renewable energy production and storage applications.

11.
ACS Nano ; 8(9): 9622-8, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25198148

RESUMO

A three-dimensional nanoporous Ni(OH)2 thin-film was hydrothermally converted from an anodically formed porous layer of nickel fluoride/oxide. The nanoporous Ni(OH)2 thin-films can be used as additive-free electrodes for energy storage. The nanoporous layer delivers a high capacitance of 1765 F g(-1) under three electrode testing. After assembly with porous activated carbon in asymmetric supercapacitor configurations, the devices deliver superior supercapacitive performances with capacitance of 192 F g(-1), energy density of 68 Wh kg(-1), and power density of 44 kW kg(-1). The wide working potential window (up to 1.6 V in 6 M aq KOH) and stable cyclability (∼90% capacitance retention over 10,000 cycles) make the thin-film ideal for practical supercapacitor devices.

12.
ACS Appl Mater Interfaces ; 6(1): 298-304, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24328320

RESUMO

Deicing heating layers are frequently used in covers of large radio-frequency (RF) equipment, such as radar, to remove ice that could damage the structures or make them unstable. Typically, the deicers are made using a metal framework and inorganic insulator; commercial resistive heating materials are often nontransparent to RF waves. The preparation of a sub-skin-depth thin film, whose thickness is very small relative to the RF skin (or penetration) depth, is the key to minimizing the RF absorption. The skin depth of typical metals is on the order of a micrometer at the gigahertz frequency range. As a result, it is very difficult for conventional conductive materials (such as metals) to form large-area sub-skin-depth films. In this report, we disclose a new deicing heating layer composite made using graphene nanoribbons (GNRs). We demonstrate that the GNR film is thin enough to permit RF transmission. This metal-free, ultralight, robust, and scalable graphene-based RF-transparent conductive coating could significantly reduce the size and cost of deicing coatings for RF equipment covers. This is important in many aviation and marine applications. This is a demonstration of the efficacy and applicability of GNRs to afford performances unattainable by conventional materials.

13.
ACS Appl Mater Interfaces ; 6(10): 7652-8, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24735429

RESUMO

Polyvinyl alcohol functionalized carbon black with H2S-sensor moieties can be pumped through oil and water in porous rock and the H2S content can be determined based on the fluorescent enhancement of the H2S-sensor addends.

14.
ACS Nano ; 8(5): 5061-8, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24694285

RESUMO

As the cylindrical sp(2)-bonded carbon allotrope, carbon nanotubes (CNTs) have been widely used to reinforce bulk materials such as polymers, ceramics, and metals. However, both the concept demonstration and the fundamental understanding on how 1D CNTs reinforce atomically thin 2D layered materials, such as graphene, are still absent. Here, we demonstrate the successful synthesis of CNT-toughened graphene by simply annealing functionalized CNTs on Cu foils without needing to introduce extraneous carbon sources. The CNTs act as reinforcing bar (rebar), toughening the graphene through both π-π stacking domains and covalent bonding where the CNTs partially unzip and form a seamless 2D conjoined hybrid as revealed by aberration-corrected scanning transmission electron microscopy analysis. This is termed rebar graphene. Rebar graphene can be free-standing on water and transferred onto target substrates without needing a polymer-coating due to the rebar effects of the CNTs. The utility of rebar graphene sheets as flexible all-carbon transparent electrodes is demonstrated. The in-plane marriage of 1D nanotubes and 2D layered materials might herald an electrical and mechanical union that extends beyond carbon chemistry.


Assuntos
Grafite/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Compostos de Boro/química , Carbono/química , Cristalização , Condutividade Elétrica , Eletrodos , Teste de Materiais , Metais/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Níquel/química , Tamanho da Partícula , Polímeros/química , Ligação Proteica , Espectrofotometria , Análise Espectral Raman , Estresse Mecânico , Propriedades de Superfície , Água
15.
ACS Nano ; 7(7): 6001-6, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23758123

RESUMO

A composite made from graphene nanoribbons (GNRs) and tin oxide (SnO2) nanoparticles (NPs) is synthesized and used as the anode material for lithium ion batteries (LIBs). The conductive GNRs, prepared using sodium/potassium unzipping of multiwall carbon nanotubes, can boost the lithium storage performance of SnO2 NPs. The composite, as an anode material for LIBs, exhibits reversible capacities of over 1520 and 1130 mAh/g for the first discharge and charge, respectively, which is more than the theoretical capacity of SnO2. The reversible capacity retains ~825 mAh/g at a current density of 100 mA/g with a Coulombic efficiency of 98% after 50 cycles. Further, the composite shows good power performance with a reversible capacity of ~580 mAh/g at the current density of 2 A/g. The high capacity, good power performance and retention can be attributed to uniformly distributed SnO2 NPs along the high-aspect-ratio GNRs. The GNRs act as conductive additives that buffer the volume changes of SnO2 during cycling. This work provides a starting point for exploring the composites made from GNRs and other transition metal oxides for lithium storage applications.


Assuntos
Fontes de Energia Elétrica , Eletrodos , Grafite/química , Lítio/química , Nanopartículas Metálicas/química , Compostos de Estanho/química , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Íons , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura
16.
ACS Nano ; 7(5): 4503-10, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23590431

RESUMO

The solubility of single-walled carbon nanotube (SWCNT) polyelectrolytes [K(THF)]nSWCNT in dimethyl sulfoxide (DMSO) was determined by a combination of centrifugation, UV-vis spectral properties, and solution extraction. The SWCNT formed a liquid crystal at a concentration above 3.8 mg/mL. Also, crown ether 18-crown-6 was found to increase the solubility of the SWCNT polyelectrolytes in DMSO. Raman spectroscopy and near-infrared (NIR) fluorescence analyses were applied to study the functionalization of SWCNTs. Small-diameter SWCNTs were found to be preferentially functionalized when the SWCNT polyelectrolytes were dispersed in DMSO.


Assuntos
Eletrólitos/química , Cristais Líquidos/química , Nanotubos de Carbono/química , Dimetil Sulfóxido/química , Modelos Moleculares , Conformação Molecular , Solubilidade
17.
Adv Mater ; 25(33): 4592-7, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23828201

RESUMO

Two types of graphene oxide fibers are spun from high concentration aqueous dopes. Fibers extruded from large flake graphene oxide dope without drawing show unconventional 100% knot efficiency. Fibers spun from small sized graphene oxide dope with stable and continuous drawing yield in good intrinsic alignment with a record high tensile modulus of 47 GPa.

18.
ACS Nano ; 7(1): 58-64, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23194106

RESUMO

Graphene was grown directly on porous nickel films, followed by the growth of controlled lengths of vertical carbon nanotube (CNT) forests that seamlessly emanate from the graphene surface. The metal-graphene-CNT structure is used to directly fabricate field-emitter devices and double-layer capacitors. The three-dimensional nanostructured hybrid materials, with better interfacial contacts and volume utilization, can stimulate the development of several energy-efficient technologies.


Assuntos
Cristalização/métodos , Eletrodos , Grafite/química , Nanopartículas Metálicas/química , Nanotubos/química , Capacitância Elétrica , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Propriedades de Superfície
19.
ACS Nano ; 7(2): 1628-37, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23339339

RESUMO

Graphene oxide nanoribbons (GONRs) and chemically reduced graphene nanoribbons (crGNRs) were dispersed at high concentrations in chlorosulfonic acid to form anisotropic liquid crystal phases. The liquid crystal solutions were spun directly into hundreds of meters of continuous macroscopic fibers. The relationship of fiber morphology to coagulation bath conditions was studied. The effects of colloid concentration, annealing temperature, spinning air gap, and pretension during annealing on the fibers' performance were also investigated. Heat treatment of the as-spun GONR fibers at 1500 °C produced thermally reduced graphene nanoribbon (trGNR) fibers with a tensile strength of 378 MPa, Young's modulus of 36.2 GPa, and electrical conductivity of 285 S/cm, which is considerably higher than that in other reported graphene-derived fibers. This better trGNR fiber performance was due to the air gap spinning and annealing with pretension that produced higher molecular alignment within the fibers, as determined by X-ray diffraction and scanning electron microscopy. The specific modulus of trGNR fibers is higher than that of the commercial general purpose carbon fibers and commonly used metals such as Al, Cu, and steel. The properties of trGNR fibers can be further improved by optimizing the spinning conditions with higher draw ratio, annealing conditions with higher pretensions, and using longer flake GONRs. This technique is a new high-carbon-yield approach to make the next generation carbon fibers based on solution-based liquid crystal phase spinning.


Assuntos
Carbono/química , Grafite/química , Nanotubos de Carbono/química , Fibra de Carbono , Condutividade Elétrica , Temperatura Alta , Cristais Líquidos/química , Modelos Moleculares , Conformação Molecular , Solubilidade
20.
ACS Nano ; 7(11): 10380-6, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24102568

RESUMO

A thermoplastic polyurethane (TPU) composite film containing hexadecyl-functionalized low-defect graphene nanoribbons (HD-GNRs) was produced by solution casting. The HD-GNRs were well distributed within the polyurethane matrix, leading to phase separation of the TPU. Nitrogen gas effective diffusivity of TPU was decreased by 3 orders of magnitude with only 0.5 wt % HD-GNRs. The incorporation of HD-GNRs also improved the mechanical properties of the composite films, as predicted by the phase separation and indicated by tensile tests and dynamic mechanical analyses. The improved properties of the composite film could lead to potential applications in food packaging and lightweight mobile gas storage containers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA