Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nucleic Acids Res ; 50(W1): W312-W321, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639516

RESUMO

In the era of life-omics, huge amounts of multi-omics data have been generated and widely used in biomedical research. It is challenging for biologists with limited programming skills to obtain biological insights from multi-omics data. Thus, a biologist-oriented platform containing visualization functions is needed to make complex omics data digestible. Here, we propose an easy-to-use, interactive web server named ExpressVis. In ExpressVis, users can prepare datasets; perform differential expression analysis, clustering analysis, and survival analysis; and integrate expression data with protein-protein interaction networks and pathway maps. These analyses are organized into six modules. Users can use each module independently or use several modules interactively. ExpressVis displays analysis results in interactive figures and tables, and provides comprehensive interactive operations in each figure and table, between figures or tables in each module, and among different modules. It is freely accessible at https://omicsmining.ncpsb.org.cn/ExpressVis and does not require login. To test the performance of ExpressVis for multi-omics studies of clinical cohorts, we re-analyzed a published hepatocellular carcinoma dataset and reproduced their main findings, suggesting that ExpressVis is convenient enough to analyze multi-omics data. Based on its complete analysis processes and unique interactive operations, ExpressVis provides an easy-to-use solution for exploring multi-omics data.


Assuntos
Multiômica , Software , Computadores , Mapas de Interação de Proteínas , Internet
2.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273235

RESUMO

Ionizing radiation exposure can cause damage to diverse tissues and organs, with the hematopoietic system being the most sensitive. However, limited information is available regarding the radiosensitivity of various hematopoietic cell populations in the bone marrow due to the high heterogeneity of the hematopoietic system. In this study, we observed that granulocyte-macrophage progenitors, hematopoietic stem/progenitor cells, and B cells within the bone marrow showed the highest sensitivity, exhibiting a rapid decrease in cell numbers following irradiation. Nonetheless, neutrophils, natural killer (NK) cells, T cells, and dendritic cells demonstrated a certain degree of radioresistance, with neutrophils exhibiting the most pronounced resistance. By employing single-cell transcriptome sequencing, we investigated the early responsive genes in various cell types following irradiation, revealing that distinct gene expression profiles emerged between radiosensitive and radioresistant cells. In B cells, radiation exposure led to a specific upregulation of genes associated with mitochondrial respiratory chain complexes, suggesting a connection between these complexes and cell radiosensitivity. In neutrophils, radiation exposure resulted in fewer gene alterations, indicating their potential for distinct mechanisms in radiation resistance. Collectively, this study provides insights into the molecular mechanism for the heterogeneity of radiosensitivity among the various bone marrow hematopoietic cell populations.


Assuntos
Radiação Ionizante , Análise de Célula Única , Transcriptoma , Animais , Camundongos , Análise de Célula Única/métodos , Transcriptoma/efeitos da radiação , Células da Medula Óssea/efeitos da radiação , Células da Medula Óssea/metabolismo , Camundongos Endogâmicos C57BL , Tolerância a Radiação/genética , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/efeitos da radiação , Células-Tronco Hematopoéticas/metabolismo , Neutrófilos/efeitos da radiação , Neutrófilos/metabolismo
3.
Biochem Biophys Res Commun ; 671: 229-235, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37307706

RESUMO

The process of erythroid differentiation is orchestrated at the molecular level by a complex network of transcription factors. Erythroid Krüppel-like factor (EKLF/KLF1) is a master erythroid gene regulator that directly regulates most aspects of terminal erythroid differentiation. However, the underlying regulatory mechanisms of EKLF protein stability are still largely unknown. In this study, we identified Vacuolar protein sorting 37 C (VPS37C), a core subunit of the Endosomal sorting complex required for transport-I (ESCRT-I) complex, as an essential regulator of EKLF stability. Our study showed that VPS37C interacts with EKLF and prevents K48-linked polyubiquitination of EKLF and proteasome-mediated EKLF degradation, thus enhancing EKLF protein stability and transcriptional activity. VPS37C overexpression in murine erythroleukemia (MEL) cells promotes hexamethylene bisacetamide (HMBA)-induced erythroid differentiation manifested by up-regulating erythroid-specific EKLF target genes and increasing benzidine-positive cells. In contrast, VPS37C knockdown inhibits HMBA-induced MEL cell erythroid differentiation. Particularly, the restoration of EKLF expression in VPS37C-knockdown MEL cells reverses erythroid-specific gene expression and hemoglobin production. Collectively, our study demonstrated VPS37C is a novel regulator of EKLF ubiquitination and degradation, which plays a positive role in erythroid differentiation of MEL cells by enhancing EKLF protein stability.


Assuntos
Fatores de Transcrição Kruppel-Like , Proteína C , Animais , Camundongos , Proteína C/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Diferenciação Celular/genética , Transporte Proteico , Células Eritroides/metabolismo
4.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362113

RESUMO

Hepassocin (HPS) is a hepatokine that has multiple proposed physiological functions. Some of the biological processes in which it is involved are closely related to endoplasmic reticulum (ER) stress, but the role of HPS in the regulation of ER stress remains unclear. Here, we demonstrated that HPS transcription is induced by the protein kinase RNA-like ER kinase (PERK)/activating transcription factor 4 (ATF4) cascade upon ER stress in hepatocytes. Additionally, fasting/refeeding also induced HPS expression in mice liver. The loss of HPS sensitizes hepatocytes to ER stress-related cytotoxicity in vitro, whereas HPS treatment altered these phenotypes. HPS deficiency exacerbates fasting/refeeding-induced ER stress in vivo. The preliminary administration of HPS ameliorates liver steatosis, cell death, and inflammation in mice injected with tunicamycin (TM). The improvement of HPS can be observed even if HPS protein is injected after TM treatment. Furthermore, the administration of an ER stress inhibitor alleviated steatohepatitis in methionine- and choline-deficient (MCD) diet-fed HPS-deficient mice. These results suggest that HPS protects hepatocytes from physiological and pathological ER stress, and that the inactivation of HPS signaling aggravating ER stress may be a novel mechanism that drives the development of steatohepatitis. The protective mechanism of HPS against ER stress in hepatocytes was associated with the regulation of ER calcium handling, and the suppression of calcium influx release from ER upon stressor treatment. Collectively, our findings indicate that HPS may act in a negative feedback fashion to regulate hepatic ER stress and protect hepatocytes from ER stress-related injury. HPS has the potential to be a candidate drug for the treatment of ER stress-related liver injury.


Assuntos
Estresse do Retículo Endoplasmático , Fígado Gorduroso , Camundongos , Animais , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Tunicamicina/farmacologia
5.
Biomed Chromatogr ; 34(12): e4903, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32428305

RESUMO

We present a simple and robust LC-MS/MS assay for the simultaneous quantitation of an antibody cocktail of trastuzumab and pertuzumab in monkey serum. The LC-MS/MS method saved costs, decreased the analysis time, and reduced quantitative times relative to the traditional ligand-binding assays. The serum samples were digested with trypsin at 50°C for 60 min after methanol precipitation, ammonium bicarbonate denaturation, dithiothreitol reduction, and iodoacetamide alkylation. The tryptic peptides were chromatographically separated using a C18 column (2.1 × 50 mm, 2.6 µm) with mobile phases of 0.1% formic acid in water and acetonitrile. The other monoclonal antibody, infliximab, was used as internal standards to minimize the variability during sample processing and detection. A unique peptide for each monoclonal antibody was simultaneously quantified using LC-MS/MS in the multiple reaction monitoring mode. Calibration curves were linear from 2.0 to 400 µg/mL. The intra- and inter-assay precision (%CV) was within 8.9 and 7.4% (except 10.4 and 15.1% for lower limit of quantitation), respectively, and the accuracy (%Dev) was within ±13.1%. The other validation parameters were evaluated, and all results met the acceptance criteria of the international guiding principles. Finally, the method was successfully applied to a pharmacokinetics study after a single-dose intravenous drip administration to cynomolgus monkeys.


Assuntos
Anticorpos Monoclonais Humanizados/sangue , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Trastuzumab/sangue , Animais , Anticorpos Monoclonais Humanizados/farmacocinética , Feminino , Modelos Lineares , Macaca fascicularis , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Trastuzumab/farmacocinética
6.
Biomed Chromatogr ; 34(10): e4921, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32537846

RESUMO

A simple, fast and high-throughput LC-tandem mass spectrometry method was developed and validated to simultaneously measure liraglutide and insulin degludec in rat plasma. After protein precipitation, plasma samples were subjected to gradient elution using an InertSustain Bio C18 column with 1000/20/1 water/acetonitrile/formic acid (v/v/v) and 1000/1 acetonitrile/formic acid (v/v) as the mobile phase. The method was validated from 1.00 to 500 ng/mL of liraglutide and insulin degludec. Further, the extraction recovery from the plasma was 41.8%-49.2% for liraglutide and 56.5%-69.7% for insulin degludec. Intra- and inter-day precision of liraglutide was 3.5%-9.4% and 8.4%-9.8%, respectively, whereas its accuracy was between -12.6% and -1.3%. Intra- and inter-day precision of insulin degludec was 5.2%-13.6% and 11.8%-19.1%, respectively, showing an accuracy between -3.0% and 9.9%. As a result, the method was successfully applied to a pharmacokinetics study of liraglutide and insulin degludec following a single-dose subcutaneous administration to rats.


Assuntos
Cromatografia Líquida/métodos , Insulina de Ação Prolongada/sangue , Liraglutida/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Estabilidade de Medicamentos , Insulina de Ação Prolongada/química , Insulina de Ação Prolongada/farmacocinética , Limite de Detecção , Modelos Lineares , Liraglutida/química , Liraglutida/farmacocinética , Ratos , Reprodutibilidade dos Testes
7.
Acta Biochim Biophys Sin (Shanghai) ; 48(11): 1026-1033, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27697751

RESUMO

The radiation-induced bystander effect (RIBE) is an important factor in tumor radiation therapy because it may increase the probability of normal cellular injury and the likelihood of secondary cancers after radiotherapy. Here, we identified the role of miR-495 in alleviating RIBEs during radiotherapy. Luciferase reporter assay results confirmed that miR-495 regulated endothelial nitric oxide synthase (eNOS) by targeting the Sp1 3'-untranslated region. Consequently, after radiation, tumor cells expressed less eNOS and Sp1 than controls. In vitro cell irradiation data based on flow-cytometric analysis and enzymed linked immunosorbent assay confirmed that nitric oxide (NO) and its downstream product transforming growth factor ß1 (TGF-ß1) were critical signaling factors contributing to RIBEs. Fewer normal LO2 liver cells were injured and fewer micronuclei were observed when treated with the medium of the miR-495 overexpressing HepG2 and ZR75-1 tumor cells. Accordingly, treatment with the miR-495 antagomir led to higher NO and TGF-ß1 levels and more injured LO2 cells. In vivo experiments indicated that local irradiation of tumors overexpressing miR-495 produced fewer necrotic foci in non-irradiated liver tissue compared with controls. miR-495 was upregulated in clinical cancer tissues compared with adjacent non-cancerous tissues, and radiation significantly reduced the expression level of miR-495 in carcinoma cell lines. In summary, miR-495 may have promise as an adjuvant for tumor radiation therapy to decrease RIBEs involving the Sp1/eNOS pathway.


Assuntos
Efeito Espectador , MicroRNAs/fisiologia , Radioterapia/efeitos adversos , Linhagem Celular , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Fator de Transcrição Sp1/metabolismo
8.
Acta Biochim Biophys Sin (Shanghai) ; 46(10): 859-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25246434

RESUMO

Human antibodies are beginning to draw attention for use in immune gene therapy. The efficient generation of effective therapeutic monoclonal antibodies suitable for the treatment of cancers and infectious diseases would be enormously valuable. Antibody display methods are increasingly used to screen human monoclonal antibodies. Here we report the construction of a mammalian cell display method derived from a naive antibody repertoire, for which human single-chain variable fragments (scFv) have been transiently displayed on 293T cell surfaces based on a pDisplay vector. The sizes of the current pDisplay-scFv antibody repertoires have been estimated to be 0.74 × 10(7). An immunoblot assay confirmed the expression of the scFv antibody library. The subcellular distribution of ErbB3-scFv expression plasmid facilitated the display of ErbB3 scFv on the cell membrane surface and the efficiency of the display was evaluated by fluorescence-activated cell sorting. This method of mammalian cell display was verified by successfully screening ErbB3 scFv candidates. A published scFv control was used to confirm the feasibility of the ErbB3 scFv screening process. Three ErbB3 scFv candidates were produced and they were found to have affinity similar to the published scFv candidate. Thus, the present screening system provided an optimal alternative for rapid acquisition of a novel candidate scFv sequence to target genes with high affinity in vitro.


Assuntos
Imunoterapia , Anticorpos de Cadeia Única/imunologia , Sequência de Bases , Primers do DNA , Citometria de Fluxo , Células HEK293 , Humanos
9.
Int J Hematol ; 120(2): 157-166, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814500

RESUMO

G protein pathway suppressor 2 (GPS2) has been shown to play a pivotal role in human and mouse definitive erythropoiesis in an EKLF-dependent manner. However, whether GPS2 affects human primitive erythropoiesis is still unknown. This study demonstrated that GPS2 positively regulates erythroid differentiation in K562 cells, which have a primitive erythroid phenotype. Overexpression of GPS2 promoted hemin-induced hemoglobin synthesis in K562 cells as assessed by the increased percentage of benzidine-positive cells and the deeper red coloration of the cell pellets. In contrast, knockdown of GPS2 inhibited hemin-induced erythroid differentiation of K562 cells. GPS2 overexpression also enhanced erythroid differentiation of K562 cells induced by cytosine arabinoside (Ara-C). GPS2 induced hemoglobin synthesis by increasing the expression of globin and ALAS2 genes, either under steady state or upon hemin treatment. Promotion of erythroid differentiation of K562 cells by GPS2 mainly relies on NCOR1, as knockdown of NCOR1 or lack of the NCOR1-binding domain of GPS2 potently diminished the promotive effect. Thus, our study revealed a previously unknown role of GPS2 in regulating human primitive erythropoiesis in K562 cells.


Assuntos
Diferenciação Celular , Eritropoese , Hemina , Leucemia Eritroblástica Aguda , Correpressor 1 de Receptor Nuclear , Humanos , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Células Eritroides/metabolismo , Células Eritroides/citologia , Eritropoese/genética , Técnicas de Silenciamento de Genes , Hemina/farmacologia , Hemoglobinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Células K562 , Leucemia Eritroblástica Aguda/patologia , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 1 de Receptor Nuclear/genética
10.
Diabetes ; 72(10): 1502-1516, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37440709

RESUMO

Hepatocyte nuclear factor 1α (HNF1α) plays essential roles in controlling development and metabolism; its mutations are clearly linked to the occurrence of maturity-onset diabetes of the young (MODY3) in humans. Lysine 117 (K117) to glutamic acid (E117) mutation in the HNF1α gene has been clinically associated with MODY3, but no functional data on this variant are available. Here, we addressed the role of lysine 117 in HNF1α function using a knock-in animal model and site-directed mutagenesis. HNF1α K117E homozygous mice exhibited dwarfism, hepatic dysfunction, renal Fanconi syndrome, and progressive wasting syndrome. These phenotypes were very similar to those of mice with complete HNF1α deficiency, suggesting that K117 is critical to HNF1α functions. K117E homozygotes developed diabetes in the early postnatal period. The relative deficiency of serum insulin levels and the normal response to insulin treatment in homozygous mice were markedly similar to those in the MODY3 disorder in humans. Moreover, K117E heterozygous mutant causes age-dependent glucose intolerance, which is similar to the pathogenesis of MODY3 as well. K117 mutants significantly reduced the overall transactivation and DNA binding capacity of HNF1α by disrupting dimerization. Collectively, our findings reveal a previously unappreciated role of POU domain of HNF1α in homodimerization and provide important clues for identifying the molecular basis of HNF1α-related diseases such as MODY3. ARTICLE HIGHLIGHTS: HNF1α K117E homozygous mice exhibited dwarfism, hepatic dysfunction, renal Fanconi syndrome, and progressive wasting syndrome. K117E homozygotes developed diabetes in the early postnatal period. K117E heterozygous mutant causes age-dependent glucose intolerance, which is similar to the pathogenesis of maturity-onset diabetes of the young. K117 mutants significantly reduced the overall transactivation and DNA binding capacity of HNF1α by disrupting dimerization.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome de Fanconi , Intolerância à Glucose , Insulinas , Camundongos , Humanos , Animais , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Lisina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , DNA , Insulinas/genética , Mutação
11.
Cell Death Dis ; 14(11): 743, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968261

RESUMO

BRISC (BRCC3 isopeptidase complex) is a deubiquitinating enzyme that has been linked with inflammatory processes, but its role in liver diseases and the underlying mechanism are unknown. Here, we investigated the pathophysiological role of BRISC in acute liver failure using a mice model induced by D-galactosamine (D-GalN) plus lipopolysaccharide (LPS). We found that the expression of BRISC components was dramatically increased in kupffer cells (KCs) upon LPS treatment in vitro or by the injection of LPS in D-GalN-sensitized mice. D-GalN plus LPS-induced liver damage and mortality in global BRISC-null mice were markedly attenuated, which was accompanied by impaired hepatocyte death and hepatic inflammation response. Constantly, treatment with thiolutin, a potent BRISC inhibitor, remarkably alleviated D-GalN/LPS-induced liver injury in mice. By using bone marrow-reconstituted chimeric mice and cell-specific BRISC-deficient mice, we demonstrated that KCs are the key effector cells responsible for protection against D-GalN/LPS-induced liver injury in BRISC-deficient mice. Mechanistically, we found that hepatic and circulating levels of TNF-α, IL-6, MCP-1, and IL-1ß, as well as TNF-α- and MCP-1-producing KCs, in BRISC-deleted mice were dramatically decreased as early as 1 h after D-GalN/LPS challenge, which occurred prior to the elevation of the liver injury markers. Moreover, LPS-induced proinflammatory cytokines production in KCs was significantly diminished by BRISC deficiency in vitro, which was accompanied by potently attenuated NF-κB activation. Restoration of NF-κB activation by two small molecular activators of NF-κB p65 effectively reversed the suppression of cytokines production in ABRO1-deficient KCs by LPS. In conclusion, BRISC is required for optimal activation of NF-κB-mediated proinflammatory cytokines production in LPS-treated KCs and contributes to acute liver injury. This study opens the possibility to develop new strategies for the inhibition of KCs-driven inflammation in liver diseases.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Células de Kupffer/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Galactosamina , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
12.
Stem Cell Res Ther ; 13(1): 436, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056423

RESUMO

BACKGROUND: Neural stem cells (NSCs)-derived extracellular vesicles (EVs) possess great potential in treating severe neurological and cerebrovascular diseases, as they carry the modulatory and regenerative ingredients of NSCs. Induced pluripotent stem cells (iPSCs)-derived NSCs culture represents a sustainable source of therapeutic EVs. However, there exist two major challenges in obtaining a scalable culture of NSCs for high-efficiency EVs production: (1) the heterogeneity of iPSC-derived NSCs culture impairs the production of high-quality EVs and (2) the intrinsic propensity of neuronal or astroglial differentiation of NSCs during prolonged culturing reduces the number of NSCs for preparing EVs. A NSCs strain that is amenable to stable self-renewal and proliferation is thus greatly needed for scalable and long-term culture. METHODS: Various constructs of the genes encoding the orphan nuclear receptor NR2E1 (TLX) were stably transfected in iPSCs, which were subsequently cultured in a variety of differentiation media for generation of iNSCsTLX. Transcriptomic and biomarker profile of iNSCsTLX were investigated. In particular, the positivity ratios of Sox2/Nestin and Musashi/Vimentin were used to gauge the homogeneity of the iNSCsTLX culture. The iNSCs expressing a truncated version of TLX (TLX-TP) was expanded for up to 45 passages, after which its neuronal differentiation potential and EV activity were evaluated. RESULTS: Stable expression of TLX-TP could confer the iPSCs with rapid and self-driven differentiation into NSCs through stable passaging up to 225 days. The long-term culture of NSCs maintained the highly homogenous expression of NSC-specific biomarkers and potential of neuronal differentiation. EVs harvested from the TLX-expressing NSCs cultures exhibited anti-inflammatory and neuroprotective activities. CONCLUSIONS: iPSC-derived NSCs stably expressing TLX-TP is a promising cell line for scalable production of EVs, which should be further exploited for therapeutic development in neurological treatment.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Diferenciação Celular/fisiologia , Células Cultivadas , Vesículas Extracelulares/genética , Células-Tronco Pluripotentes Induzidas/metabolismo
13.
FEBS J ; 289(15): 4518-4535, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35068054

RESUMO

The precise regulation of the T-cell activation process is critical for overall immune homeostasis. Although protein phosphatase 2A (PP2A) is required for T-cell development and function, the role of PPP2CB, which is the catalytic subunit ß isoform of PP2A, remains unknown. In the present study, using a T cell-specific knockout mouse of PPP2CB (PPP2CBfl/fl Lck-Cre+ ), we demonstrated that PPP2CB was dispensable for T-cell development in the thymus and peripheral lymphoid organs. Furthermore, PPP2CB deletion did not affect T-cell receptor (TCR)-induced T-cell activation or cytokine-induced T-cell responses; however, it specifically enhanced phorbol myristate acetate (PMA) plus ionomycin-induced T-cell activation with increased cellular proliferation, elevated CD69 and CD25 expression, and enhanced cytokine production (inteferon-γ, interleukin-2 and tumor necrosis factor). Mechanistic analyses suggested that the PPP2CB deletion enhanced activation of the phosphoinositide 3-kinase/Akt signaling pathway and Ca2+ flux following stimulation with PMA plus ionomycin. Moreover, the specific PI3K inhibitor rescued the augmented cell activation in PPP2CB-deficient T cells. Using mass spectrometry-based phospho-peptide analysis, we identified potential substrates of PPP2CB during PMA plus ionomycin-induced T-cell activation. Collectively, our study provides evidence of the specific role of PPP2CB in controlling PMA plus ionomycin-induced T-cell activation.


Assuntos
Ativação Linfocitária , Fosfatidilinositol 3-Quinases , Proteína Fosfatase 2 , Proteínas Proto-Oncogênicas c-akt , Linfócitos T , Animais , Domínio Catalítico , Citocinas , Ionomicina/farmacologia , Camundongos , Fosfatidilinositol 3-Quinases/genética , Proteína Fosfatase 2/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Linfócitos T/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
14.
Int J Nanomedicine ; 13: 763-776, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29440899

RESUMO

INTRODUCTION: The toxic side effects of doxorubicin (DOX) have limited its use in chemotherapy. Neither liposomal DOX nor pegylated liposomal DOX are able to completely resolve this issue. This is a proof-of-concept study testing aptamer-drug conjugate (ApDC) targeted delivery systems for chemotherapeutic drugs. METHODS: Aptamer library targeting human epidermal growth factor receptor 3 (HER3) was screened and affinity was determined by enzyme-linked immunosorbent assay. Specificity was tested in MCF-7HER3-high, BT474HER3-high, and 293THER3-negative cells using flow cytometry and confocal microscopy. We further developed a HER3 aptamer-functionalized liposome encapsulating DOX and the efficiency of this ApDC was detected by cellular uptake analysis and cell viability assay. In MCF-7 tumor-bearing mice, tumor targeting evaluation, efficacy, toxicity and preliminary pharmocokinetic study was performed. RESULTS: The candidate #13 aptamer had highest affinity (Kd =98±9.7 nM) and specificity. ApDC effectively reduces the half maximal inhibitory concentration of DOX compared with lipsome-DOX and free DOX. In vivo imaging and preliminary distribution studies showed that actively targeted nanoparticles, such as Apt-Lip-DOX molecules, could facilitate the delivery of DOX into tumors in MCF-7-bearing mice. This targeted chemotherapy caused greater tumor suppression than other groups and alleviated side effects such as weight loss, low survival rate, and organ (heart and liver) injury demonstrated by H&E staining. CONCLUSION: The results indicate that targeted chemotherapy using the aptamer-drug conjugate format could provide better tolerability and efficacy compared with non-targeted delivery in relatively low-dose toxic drugs.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Cardiotoxicidade/etiologia , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Receptor ErbB-3/metabolismo , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Lipossomos/química , Células MCF-7 , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/toxicidade , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/efeitos adversos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Drug Target ; 25(3): 275-283, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27819142

RESUMO

Tumour immunosuppressive microenvironments inhibit antigen-specific cellular responses and interfere with CpG-mediated immunotherapy. Overcoming tumour microenvironment (TME) immunosuppression is an important strategy for effective therapy. This study investigated the ability of a tumour-targeting IL-4Rα aptamer-liposome-CpG ODN delivery system to introduce CpG into tumours and overcome the immunosuppressive TME. The IL-4Rα-liposome-CpG delivery system was prepared. FAM-CpG visualisation was used to demonstrate tumour targeting in vitro and in vivo. Anti-tumour effects of this delivery system were evaluated in CT26 tumour-bearing mice. Mechanisms for conquering the TME were investigated. FAM-CpG was better distributed into the tumours upon treatment with IL-4Rα-liposome-FAM-CpG compared to distribution in the control group in vitro and in vivo. IL-4Rα-aptamer-liposome-CpG treatment inhibited distinct myeloid-derived suppressor cell populations in tumours and bone marrow. Similar profiles were observed for regulatory T cells in tumours. In CT26 tumour-bearing mice, IL-4Rα-liposome-CpG treatment exhibited enhanced anti-tumour activity. Increased mRNA levels of TNF-α, IL-2, and IL-12, and decreased mRNA levels of VEGF, IL-6, IL-10, MMP9, arginase-1, inducible NOS, CXCL9, p-Stat3, and NF-κB were observed in tumours upon IL-4R-liposome-CpG-treatment. The results suggested that pharmacologic targeting by the IL-4R aptamer-liposome-CpG system improves TME therapeutic benefit and provides a rationale for cancer immunotherapies.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Proliferação de Células/efeitos dos fármacos , Subunidade alfa de Receptor de Interleucina-4/genética , Neoplasias Experimentais/patologia , Oligodesoxirribonucleotídeos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real
16.
Mol Med Rep ; 9(3): 1032-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24337075

RESUMO

Hypoxia, a critical regulator of tumor growth and metastasis, induces the transcriptional activation of several pathways involved in proliferation, migration and invasion. Gankyrin was found to be overexpressed, and also promoted the metastasis in breast cancer cells, which is also involved in the regulation of hypoxia inducible factor­1 and hypoxia­inducible factor­1α. The present study showed that gankyrin mRNA and protein expression were increased under hypoxic conditions in the BT474 breast cancer cell line, accompanied with increased ability of cell migration and invasion. Lentivirus­mediated siRNA targeting gankyrin was transfected into BT474 cells. Wound­healing and transwell experiments showed that gankyrin deletion abrogated the increased migration and invasion of BT474 cells due to hypoxia. In addition, E­cadherin was found to be involved in the gankyrin induced invasion of breast cancer cells due to hypoxia. The present study indicated that gankyrin deletion abrogated the increased metastatic potential of breast cancer cells under hypoxic conditions partly through regulating E­cadherin, suggesting that an improved understanding of gankyrin may offer a potential therapeutic target for the treatment of human breast cancer metastasis.


Assuntos
Neoplasias da Mama/fisiopatologia , Hipóxia Celular , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Células MCF-7 , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
17.
J Chromatogr B Analyt Technol Biomed Life Sci ; 878(21): 1893-8, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20570575

RESUMO

An improved liquid chromatographic method with on-line solid phase extraction (SPE) and tandem mass spectrometric detection was optimised for quantification of the anti-HIV peptide Sifuvirtide in human plasma. The SPE sorbents, loading buffer composition and other aspects of the on-line SPE column were investigated in detail for efficiently extracting the interesting peptides and simultaneously discarding the large amount of proteins. The gradient elution program was optimised on the analysis column to decrease the matrix effect and obtain excellent selectivity. The multiple charge ion at m/z 946.4 of Sifuvirtide was quantified by a linear ion trap mass spectrometer, operating in the positive mode, and selective reaction monitoring (SRM) acquisition. Method validation results demonstrated that the linear calibration curve covered a range of 6.1-6250 ng/mL, and the correlation coefficients (r(2)) were above 0.992. The lower limit of detection (LLOD) with a signal-to-noise (S/N) ratio higher than 10 was 6.1 ng/mL. The accuracy ranged from -7.6 to 10.6%, and the intra- and inter-batch precisions were less than 8.7% and 5.5%, respectively. Finally, more than nine hundred of samples from a clinical trial was completely analyzed using this on-line SPE coupled HPLC-MS/MS system in one single week, due to the rapid run-time of individual sample (6.5 min).


Assuntos
Fármacos Anti-HIV , Cromatografia Líquida de Alta Pressão/métodos , Peptídeos , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Acetonitrilas/química , Fármacos Anti-HIV/sangue , Fármacos Anti-HIV/química , Formiatos/química , Humanos , Modelos Lineares , Peptídeos/sangue , Peptídeos/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA