Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D1024-D1032, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37941143

RESUMO

The silkworm Bombyx mori is a domesticated insect that serves as an animal model for research and agriculture. The silkworm super-pan-genome dataset, which we published last year, is a unique resource for the study of global genomic diversity and phenotype-genotype association. Here we present SilkMeta (http://silkmeta.org.cn), a comprehensive database covering the available silkworm pan-genome and multi-omics data. The database contains 1082 short-read genomes, 546 long-read assembled genomes, 1168 transcriptomes, 294 phenotype characterizations (phenome), tens of millions of variations (variome), 7253 long non-coding RNAs (lncRNAs), 18 717 full length transcripts and a set of population statistics. We have compiled publications on functional genomics research and genetic stock deciphering (mutant map). A range of bioinformatics tools is also provided for data visualization and retrieval. The large batch of omics data and tools were integrated in twelve functional modules that provide useful strategies and data for comparative and functional genomics research. The interactive bioinformatics platform SilkMeta will benefit not only the silkworm but also the insect biology communities.


Assuntos
Bombyx , Genoma de Inseto , Animais , Bombyx/genética , Biologia Computacional , Genômica , Metadados , Multiômica
2.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36718535

RESUMO

The genetic basis of phenotypic variation is a long-standing concern of evolutionary biology. Coloration has proven to be a visual, easily quantifiable, and highly tractable system for genetic analysis and is an ever-evolving focus of biological research. Compared with the homogenized brown-yellow cocoons of wild silkworms, the cocoons of domestic silkworms are spectacularly diverse in color, such as white, green, and yellow-red; this provides an outstanding model for exploring the phenotypic diversification and biological coloration. Herein, the molecular mechanism underlying silkworm green cocoon formation was investigated, which was not fully understood. We demonstrated that five of the seven members of a sugar transporter gene cluster were specifically duplicated in the Bombycidae and evolved new spatial expression patterns predominantly expressed in silk glands, accompanying complementary temporal expression; they synergistically facilitate the uptake of flavonoids, thus determining the green cocoon. Subsequently, polymorphic cocoon coloring landscape involving multiple loci and the evolution of cocoon color from wild to domestic silkworms were analyzed based on the pan-genome sequencing data. It was found that cocoon coloration involved epistatic interaction between loci; all the identified cocoon color-related loci existed in wild silkworms; the genetic segregation, recombination, and variation of these loci shaped the multicolored cocoons of domestic silkworms. This study revealed a new mechanism for flavonoids-based biological coloration that highlights the crucial role of gene duplication followed by functional diversification in acquiring new genetic functions; furthermore, the results in this work provide insight into phenotypic innovation during domestication.


Assuntos
Bombyx , Animais , Bombyx/genética , Bombyx/metabolismo , Seda/genética , Seda/metabolismo , Sequência de Bases , Flavonoides/metabolismo
3.
PLoS Genet ; 16(9): e1009004, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32986696

RESUMO

Many insects spin cocoons to protect the pupae from unfavorable environments and predators. After emerging from the pupa, the moths must escape from the sealed cocoons. Previous works identified cocoonase as the active enzyme loosening the cocoon to form an escape-hatch. Here, using bioinformatics tools, we show that cocoonase is specific to Lepidoptera and that it probably existed before the occurrence of lepidopteran insects spinning cocoons. Despite differences in cocooning behavior, we further show that cocoonase evolved by purification selection in Lepidoptera and that the selection is more intense in lepidopteran insects spinning sealed cocoons. Experimentally, we applied gene editing techniques to the silkworm Bombyx mori, which spins a dense and sealed cocoon, as a model of lepidopteran insects spinning sealed cocoons. We knocked out cocoonase using the CRISPR/Cas9 system. The adults of homozygous knock-out mutants were completely formed and viable but stayed trapped and died naturally in the cocoon. This is the first experimental and phenotypic evidence that cocoonase is the determining factor for breaking the cocoon. This work led to a novel silkworm strain yielding permanently intact cocoons and provides a new strategy for controlling the pests that form cocoons.


Assuntos
Bombyx/enzimologia , Estágios do Ciclo de Vida/fisiologia , Animais , Animais Geneticamente Modificados , Bombyx/genética , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Homozigoto , Mutação , Filogenia , Seleção Genética , Especificidade da Espécie
4.
PLoS Genet ; 16(7): e1008907, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667927

RESUMO

Holometabolous insects have distinct larval, pupal, and adult stages. The pupal stage is typically immobile and can be subject to predation, but cocoon offers pupal protection for many insect species. The cocoon provides a space in which the pupa to adult metamorphosis occurs. It also protects the pupa from weather, predators and parasitoids. Silk protein is a precursor of the silk used in cocoon construction. We used the silkworm as a model species to identify genes affecting silk protein synthesis and cocoon construction. We used quantitative genetic analysis to demonstrate that ß-1,4-N-acetylglucosaminidase 1 (BmGlcNase1) is associated with synthesis of sericin, the main composite of cocoon. BmGlcNase1 has an expression pattern coupled with silk gland development and cocoon shell weight (CSW) variation, and CSW is an index of the ability to synthesize silk protein. Up-regulated expression of BmGlcNase1 increased sericin content by 13.9% and 22.5% while down-regulation reduced sericin content by 41.2% and 27.3% in the cocoons of females and males, respectively. Genomic sequencing revealed that sequence variation upstream of the BmGlcNase1 transcriptional start site (TSS) is associated with the expression of BmGlcNase1 and CSW. Selective pressure analysis showed that GlcNase1 was differentially selected in insects with and without cocoons (ω1 = 0.044 vs. ω2 = 0.154). This indicates that this gene has a conserved function in the cocooning process of insects. BmGlcNase1 appears to be involved in sericin synthesis and silkworm cocooning.


Assuntos
Acetilglucosaminidase/genética , Bombyx/genética , Cruzamento , Domesticação , Animais , Bombyx/fisiologia , Feminino , Regulação da Expressão Gênica/genética , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Biossíntese de Proteínas/genética , Seda/genética
5.
Environ Microbiol ; 23(4): 1858-1875, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32902116

RESUMO

Plant-associated microbes influence plant performance and may also impact biotic and abiotic stress tolerance. The microbiome of mulberry trees planted for ecological restoration in the hydro-fluctuation belt of the Three Gorges Reservoir Region, China, exhibited distinct patterns of localization. The endosphere exhibited lower α-diversity relative to the rhizosphere, but was more closely related to host growth status, especially in stem tissues. Pantoea was the predominant bacterial genus inhabiting the stems of two well-growing plants, while sequences identified as Pseudomonas and Pantoea were abundant in poorly growing plants. The complexity of the endophytic community was more connected to growth status in well-growing plants than it was in poorly growing plants. Among 151 endophytes cultured from collected samples of mulberry, 64 exhibited plant growth-promoting (PGP) potential in vitro and the majority of beneficial taxa were harvested from well-growing plants. Collectively, the present study indicates that the recruitment of beneficial endophytes may contribute to mulberry fitness under abiotic stress, and it provides a foundation for the development of a new strategy in vegetation restoration.


Assuntos
Microbiota , Morus , Bactérias/genética , Endófitos/genética , Raízes de Plantas , Rizosfera , Árvores
6.
Ecotoxicol Environ Saf ; 209: 111816, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360213

RESUMO

As a non-essential heavy metal, cadmium (Cd) is toxic to plants. In the last 15 years, over 70 transcriptome studies have been published to decipher the molecular response mechanism against Cd stress in different plants. To extract generalization results from transcriptomic data across different plants and obtain some hub genes that respond to Cd stress, we carried out a meta-analysis of 32 published datasets. Cluster analysis revealed that plant species played a more decisive role than the media used and exposure time in the transcriptome patterns of plant roots response to Cd. The datasets from a Gramineae-like (GL) group were closer in clustering. 838 DEGs were commonly Cd-regulated in at least nine of 18 GL datasets. Gene ontology and KEGG pathway analyses revealed that oxidative stress-related terms and lignin synthesis-related terms were significantly enriched. Mapman analysis revealed that these common DEGs were mainly involved in regulation, cellular response, secondary metabolism, transport, cell wall and lipid metabolism. In Oryza sativa, 15 DEGs were up-regulated in at least four of five HM (As, Cr, Cd, Hg and Pb) groups, such as Os10g0517500 (methionine gamma-lyase) and Os01g0159800 (bHLH107). Moreover, our datasets can be used to retrieve log2FC value of specific genes across 29 studies (48 datasets), which provides data reference for the subsequent selection of HM-related genes. Our results provide the basis for further understanding of Cd tolerance mechanisms in plants.


Assuntos
Cádmio/toxicidade , Poaceae/fisiologia , Poluentes do Solo/toxicidade , Estresse Fisiológico/genética , Transcriptoma/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Metais Pesados/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Poaceae/metabolismo , Metabolismo Secundário
7.
Semin Cancer Biol ; 57: 59-71, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30453040

RESUMO

Altering energy metabolism to meet the uncontrolled proliferation and metastasis has emerged as one of the most significant hallmarks in tumors. However, the detailed molecular mechanisms and regulatory actions underlying have not been fully elucidated. As a family of NAD+ dependent protein modifying enzymes, sirtuins (SIRT1-SIRT7) have multiple catalytic functions such as deacetylase, desuccinylase, demalonylase, demyristoylase, depalmitoylase, and/or mono-ADP-ribosyltransferase. They play important roles in regulating cell metabolism, especially in glucose and lipid metabolism, thereby exerting complex functions in either increasing or decreasing malignant characteristics in tumors. This review highlights the major function and its mechanisms of sirtuins in cellular metabolic reprogramming, such as glucose metabolism including aerobic glycolysis (the Warburg effect), oxidative phosphorylation (OXPHOS)/tricarboxylic acid (TCA) cycle and glutamine metabolism; lipometabolism including fatty acid metabolism, cholesterol metabolism, ketone body metabolism and acetate metabolism; as well as leucine metabolism and the urea cycle in tumorigenesis and cancer development.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Metabolismo Energético , Família Multigênica , Neoplasias/etiologia , Neoplasias/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Aminoácidos/metabolismo , Animais , Suscetibilidade a Doenças , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Redes e Vias Metabólicas , Neoplasias/patologia
8.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936580

RESUMO

The endosomal-type Na+, K+/H+ antiporters (NHXs) play important roles in K+, vesicle pH homeostasis, and protein trafficking in plant. However, the structure governing ion transport mechanism and the key residues related to the structure-function of the endosomal-type NHXs remain unclear. Here, the structure-function relationship of the only endosomal-type NHX from mulberry, MnNHX6, was investigated by homology modeling, mutagenesis, and localization analyses in yeast. The ectopic expression of MnNHX6 in arabidopsis and Nhx1 mutant yeast can enhance their salt tolerance. MnNHX6's three-dimensional structure, established by homology modeling, was supported by empirical, phylogenetic, and experimental data. Structure analysis showed that MnNHX6 contains unusual 13 transmembrane helices, but the structural core formed by TM5-TM12 assembly is conserved. Localization analysis showed that MnNHX6 has the same endosomal localization as yeast Nhx1/VPS44, and Arg402 is important for protein stability of MnNHX6. Mutagenesis analysis demonstrated MnNHX6 contains a conserved cation binding mechanism and a similar charge-compensated pattern as NHE1, but shares a different role in ion selectivity than the vacuolar-type NHXs. These results improve our understanding of the role played by the structure-function related key residues of the plant endosomal-type NHXs, and provide a basis for the ion transport mechanism study of endosomal-type NHXs.


Assuntos
Antiporters/química , Antiporters/metabolismo , Endossomos/metabolismo , Morus/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Sequência Conservada , Evolução Molecular , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutação/genética , Fenótipo , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo , Tolerância ao Sal , Relação Estrutura-Atividade
9.
J Cell Biochem ; 120(10): 17283-17292, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31106470

RESUMO

Long noncoding RNAs (lncRNAs) areinvolvedin a variety of biological processes. In silkworm, numerous lncRNAs have been predicted through deep transcriptome sequencing, but no functional role has been experimentally validated yet. Here, we characterized a new lncRNA iab-1 that was mainly encoded by the intergenic region between Bmabd-A and Bmabd-B in the Homeobox (Hox) cluster of the silkworm, Bombyx mori. More than seven alternative splicing isoforms of lncRNA iab-1 were cloned, which were subgrouped into types 1 and 2 based on the location of the 3'-ends. The iab-1 was expressed at a low level, but the expression of iab-1 peaked at several specific development stages, including 3 to 4 days during the embryonic stage, stages before fourth molting, and the sixth hour after the fourth molting, and early stages during metamorphosis. It was highly expressed in the nervus and epidermis, especially the epidermis of the posterior abdomen at the fourth instar premolting stage. The relationship between iab-1 and nearby Hox genes was analyzed at different developmental stages. Iab-1 expression was highly associated with Bmabd-A as well as Bmabd-B in the embryonic and larval stages, while this association was decreased at the metamorphic stage; iab-1 expression was highly associated with BmUbx only in the embryonic stage. Downregulation of iab-1 expression by small interfering RNA led to the death of most of the treated individuals at the larval stage, suggesting that iab-1 transcript expression might be involved in certain relevant physiological processes. The expression of Bmabd-A and Bmabd-B did not change in iab-1 downregulated individuals, indicating that the relevance between the two genes and iab-1 was not induced by iab-1 transcript. Collectively, the results showed that the newly identified iab-1 may be involved in some physiological processes, and the interaction between iab-1 and Hox genes was also preliminarily analyzed.


Assuntos
Bombyx/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/metabolismo , RNA Longo não Codificante/genética , Animais , Bombyx/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , RNA Longo não Codificante/antagonistas & inibidores , RNA Interferente Pequeno/genética
10.
Int J Mol Sci ; 20(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137877

RESUMO

The aim of this study was to determine how the mulberry (Morus notabilis) polyphenol oxidase 1 gene (MnPPO1) is regulated during plant stress responses by exploring the interaction between its promoter region and regulatory transcription factors. First, we analyzed the cis-acting elements in the MnPPO1 promoter. Then, we used the MnPPO1 promoter region [(1268 bp, including an MYB3R-binding cis-element (MSA)] as a probe to capture proteins in DNA pull-down assays. These analyses revealed that the MYB3R1 transcription factor in M. notabilis (encoded by MnMYB3R1) binds to the MnPPO1 promoter region. We further explored the interaction between the MnPPO1 promoter and MYB3R1 with the dual luciferase reporter, yeast one-hybrid, and chromatin immunoprecipitation assays. These analyses verified that MnMYB3R1 binds to the MSA in the MnPPO1 promoter region. The overexpression of MnMYB3R1 in tobacco upregulated the expression of the tobacco PPO gene. This observation as well as the quantitative real-time PCR results implied that MnMYB3R1 and PPO are involved in the abscisic acid-responsive stress response pathway.


Assuntos
Catecol Oxidase/genética , Morus/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Catecol Oxidase/metabolismo , Regulação da Expressão Gênica de Plantas , Morus/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica
11.
Molecules ; 24(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823408

RESUMO

The extraction of Ramulus mori polysaccharides (RMPs) was optimized using response surface methodology (RSM). The optimal process conditions, which gave the highest yield of RMPs (6.25%) were 80 °C, 50 min, and a solid⁻liquid ratio of 1:40 (g/mL), with the extraction performed twice. The RMPs contained seven monosaccharides, namely, mannose, rhamnose; glucuronic acid, glucose, xylose, galactose, and arabinose, in a 1.36:2.68:0.46:328.17:1.53:21.80:6.16 molar ratio. The glass transition and melting temperatures of RMPs were 83 and 473 °C, respectively. RMPs were α-polysaccharides and had surfaces that resembled a porous sponge, as observed by scanning electron microscopy. RMPs inhibited the proliferation of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa and showed antioxidant activity (assessed by three different methods), although it was generally weaker than that of vitamin C. RMPs showed anti-inflammatory activity in a concentration-dependent manner. This study provides a basis for exploring the potential uses of RMPs.


Assuntos
Antibacterianos , Anti-Inflamatórios , Antioxidantes , Bactérias/crescimento & desenvolvimento , Morus/química , Polissacarídeos , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Camundongos , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Células RAW 264.7
12.
Plant Cell Rep ; 37(8): 1101-1112, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29846768

RESUMO

KEY MESSAGE: Two LysM-containing proteins, namely, MmLYP1 and MmLYK2, were identified in mulberry. These proteins might be involved in chitin signaling. The LysM1 of MmLYK2 is critical for their interactions. Chitin is a major component of fungal cell walls and acts as an elicitor in plant innate immunity. Lysin motif (LysM)-containing proteins are essential for chitin recognition. However, related studies have been rarely reported in woody plants. In this study, in mulberry, the expression of a LysM-containing protein, MmLYP1, was significantly up-regulated after treatment with chitin and pathogenic fungi. In addition, MmLYP1 has an affinity for insoluble chitin polymers. Thus, MmLYP1 might function in chitin signaling. Since MmLYP1 lacks an intracellular domain, additional protein kinases are required for this signaling. An LysM-containing kinase, MmLYK2, was then identified. Expression of the MmLYK2 did not change significantly after chitin treatment, and the affinity of MmLYK2 for insoluble chitin was not high. The structure of MmLYP1 is similar to that of the chitin elicitor-binding proteins in rice and Arabidopsis. However, MmLYK2 has two LysM motifs, while the chitin elicitor receptor kinase 1 proteins in rice and Arabidopsis have one and three LysM motifs, respectively. The LysM1 of MmLYK2 interacted with all four LysM motifs in MmLYP1 and MmLYK2 in yeast. The chimera lacking the LysM1 of MmLYK2 did not interact with MmLYP1 and MmLYK2 in yeast and Nicotiana benthamiana cells. The LysM1 in MmLYK2 is the key motif in the interaction between MmLYP1 and MmLYK2, which may be involved in chitin signaling.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quitina/metabolismo , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ligação Proteica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
13.
Int J Mol Sci ; 20(1)2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30587818

RESUMO

Heterotrimeric guanine-nucleotide-binding proteins (G-proteins) play key roles in responses to various abiotic stress responses and tolerance in plants. However, the detailed mechanisms behind these roles remain unclear. Mulberry (Morus alba L.) can adapt to adverse abiotic stress conditions; however, little is known regarding the associated molecular mechanisms. In this study, mulberry G-protein genes, MaGα, MaGß, MaGγ1, and MaGγ2, were independently transformed into tobacco, and the transgenic plants were used for resistance identification experiments. The ectopic expression of MaGα in tobacco decreased the tolerance to drought and salt stresses, while the overexpression of MaGß, MaGγ1, and MaGγ2 increased the tolerance. Further analysis showed that mulberry G-proteins may regulate drought and salt tolerances by modulating reactive oxygen species' detoxification. This study revealed the roles of each mulberry G-protein subunit in abiotic stress tolerance and advances our knowledge of the molecular mechanisms underlying G-proteins' regulation of plant abiotic stress tolerance.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Morus/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Secas , Expressão Ectópica do Gene , Proteínas de Ligação ao GTP/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sais/química , Plântula/crescimento & desenvolvimento , Nicotiana/crescimento & desenvolvimento
14.
Int J Mol Sci ; 19(4)2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596327

RESUMO

Phenylketonuria (PKU) is an inborn error of metabolism caused by mutations in the phenylalanine hydroxylase (PAH) gene or by defects in the tetrahydrobiopterin (BH4) synthesis pathway. Here, by positional cloning, we report that the 6-pyruvoyl-tetrahydropterin synthase (PTPS) gene, encoding a key enzyme of BH4 biosynthesis, is responsible for the alc (albino C) mutation that displays pale body color, head shaking, and eventually lethality after the first molting in silkworm. Compared to wild type, the alc mutant produced more substrates (phenylalanine (Phe) and tyrosine (Tyr)) and generated less DOPA and dopamine. Application of 2,4-diamino-6-hydroxypyrimidine (DAHP) to block BH4 synthesis in the wild type effectively produced the alc-like phenotype, while BH4 supplementation rescued the defective body color and lethal phenotype in both alc and DAHP-treated individuals. The detection of gene expressions and metabolic substances after drugs treatments in alc and normal individuals imply that silkworms and humans have a high similarity in the drugs metabolic features and the gene pathway related to BH4 and the dopamine biosynthesis. We propose that the alc mutant could be used as an animal model for drug evaluation for BH4-deficient PKU.


Assuntos
Bombyx , Proteínas de Insetos/genética , Fósforo-Oxigênio Liases/genética , Pigmentação , Animais , Bombyx/genética , Bombyx/metabolismo , Proteínas de Insetos/metabolismo , Larva , Mutação , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Pigmentação/efeitos dos fármacos , Pigmentação/genética , Pterinas/metabolismo , Açúcares Ácidos/farmacologia
15.
Biochem Biophys Res Commun ; 491(4): 897-902, 2017 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-28754592

RESUMO

Heterotrimeric guanine-nucleotide-binding proteins (G-proteins) consist of α, ß and γ subunits and play important roles in response and tolerance to abiotic stresses in plants, but the function of the heterotrimeric G-protein ß subunit in response to drought remains unclear. In the present study, the AGB1 mutants (agb1-2-1 and agb1-3-2) were more sensitive to drought than the wild-type. The overexpression of mulberry (Morus alba L.) G-protein ß subunit in transgenic tobacco (Nicotiana tabacum L.) significantly enhanced the plants' drought tolerance. The transgenic tobacco plants had higher proline contents and peroxidase activities, and lower malonaldehyde and hydrogen peroxide contents and superoxide free radical accumulations under drought conditions. Additionally, transcript levels of the tobacco antioxidative genes, NtSOD and NtCAT, increased in drought-stressed transgenic tobacco plants. Thus, the heterotrimeric G-protein ß subunits positively regulate drought tolerance in plants.


Assuntos
Arabidopsis/química , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Arabidopsis/metabolismo , Dessecação , Secas , Subunidades beta da Proteína de Ligação ao GTP/genética
16.
Transgenic Res ; 26(6): 807-815, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28952064

RESUMO

Diapause is a state of developmental arrest that is most often observed in arthropods, especially insects. The domesticated silkworm, Bombyx mori, is a typical insect that enters diapause at an early embryonic stage. Previous studies have revealed that the diapause hormone (DH) signaling molecules, especially the core members DH and DH receptor 1 (DHR1), are crucial for the determination of embryonic diapause in diapause silkworm strains. However, whether they function in non-diapause silkworm strains remains largely unknown. Here, we generated two transgenic lines overexpressing DH or DHR1 genes in a non-diapause silkworm strain, Nistari. Our results showed that developmental expression patterns of DH and DHR1 are quite similar in transgenic silkworms: both genes are highly expressed in the mid to late stages of pupae and are most highly expressed in day-6 pupae but are expressed at very low levels in other developmental stages. Moreover, the overexpression of DH or DHR1 can affect the expression of diapause-related genes but is not sufficient to induce embryonic diapause in their offspring. This study provides new insights into the function of DH and DHR1 in a non-diapause silkworm strain.


Assuntos
Bombyx/genética , Proteínas de Insetos/genética , Neuropeptídeos/genética , Animais , Animais Geneticamente Modificados , Bombyx/fisiologia , Feminino , Regulação da Expressão Gênica , Fenótipo
17.
Genome ; 60(6): 473-484, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28177830

RESUMO

Codons play important roles in regulating gene expression levels and mRNA half-lives. However, codon usage and related studies in multicellular organisms still lag far behind those in unicellular organisms. In this study, we describe for the first time genome-wide patterns of codon bias in Morus notabilis (mulberry tree), and analyze genome-wide codon usage in 12 other species within the order Rosales. The codon usage of M. notabilis was affected by nucleotide composition, mutation pressure, nature selection, and gene expression level. Translational selection optimal codons were identified and highly expressed genes of M. notabilis tended to use the optimal codons. Genes with higher expression levels have shorter coding region and lower amino acid complexity. Housekeeping genes showed stronger translational selection, which, notably, was not caused by the large differences between the expression level of housekeeping genes and other genes.


Assuntos
Códon/genética , Genoma de Planta/genética , Morus/genética , Transcriptoma/genética , Aminoácidos/genética , Composição de Bases/genética , Regulação da Expressão Gênica de Plantas/genética , Mutação/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Seleção Genética/genética
18.
Phytopathology ; 107(3): 353-361, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27870600

RESUMO

Scleromitrula shiraiana causes the popcorn disease in mulberry trees resulting in severe economic losses. Previous studies have shown that melanin may play a vital role in establishing the pathogenicity of fungi. In the present study, we identified the melanin produced in S. shiraiana belongs to DHN melanin by gas chromatography-mass spectrometry, and cloned the laccase Sh-lac, a potential DHN melanin biosynthesis gene from S. shiraiana. We obtained two stable Sh-lac silenced transformants using RNAi, ilac-4 and 8 to elucidate the DHN melanin biosynthetic pathway in S. shiraiana. The melanin production of ilac-4 and ilac-8 was significantly reduced, and their vegetative growth was also suppressed. Results such as these led to a proposal that Sh-lac played a key role in DHN melanin formation in S. shiraiana and may function differentially with other melanin biosynthetic genes. The inhibition of melanin was accompanied by the decrease of oxalic acid and the adhesion of hyphae was impaired. Our results indicated that laccase was an important enzyme in the synthesis of melanin and might play a critical role in the pathogenicity of S. shiraiana.


Assuntos
Ascomicetos/enzimologia , Lacase/genética , Melaninas/metabolismo , Morus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Lacase/metabolismo
19.
Molecules ; 23(1)2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29267231

RESUMO

Anthocyanins and flavones are important pigments responsible for the coloration of fruits. Mulberry fruit is rich in anthocyanins and flavonols, which have multiple uses in traditional Chinese medicine. The antinociceptive and antibacterial activities of total flavonoids (TF) from black mulberry (MnTF, TF of Morus nigra) and non-black mulberry (MmTF, TF of Morus mongolica; and MazTF, TF of Morus alba 'Zhenzhubai') fruits were studied. MnTF was rich in anthocyanins (11.3 mg/g) and flavonols (0.7 mg/g) identified by ultra-performance liquid chromatography-tunable ultraviolet/mass single-quadrupole detection (UPLC-TUV/QDa). Comparatively, MmTF and MazTF had low flavonol contents and MazTF had no anthocyanins. MnTF showed significantly higher antinociceptive and antibacterial activities toward Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus than MmTF and MazTF. MnTF inhibited the expression of interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS), phospho-p65 (p-p65) and phospho-IκBα (p-IκBα), and increased interleukin 10 (IL-10). Additionally, mice tests showed that cyanidin-3-O-glucoside (C3G), rutin (Ru) and isoquercetin (IQ) were the main active ingredients in the antinociceptive process. Stronger antinociceptive effect of MnTF was correlated with its high content of anthocyanins and flavonols and its inhibitory effects on proinflammatory cytokines, iNOS and nuclear factor-κB (NF-κB) pathway-related proteins.


Assuntos
Analgésicos/química , Antocianinas/química , Antibacterianos/química , Flavonóis/química , Morus/química , Extratos Vegetais/química , Analgésicos/farmacologia , Animais , Antocianinas/farmacologia , Antibacterianos/farmacologia , Sobrevivência Celular , Escherichia coli/efeitos dos fármacos , Flavonóis/farmacologia , Frutas/química , Interleucinas/metabolismo , Masculino , Camundongos , Óxido Nítrico Sintase/metabolismo , Extratos Vegetais/isolamento & purificação , Pseudomonas aeruginosa/efeitos dos fármacos , Células RAW 264.7 , Staphylococcus aureus/efeitos dos fármacos
20.
Transgenic Res ; 25(6): 795-811, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27334499

RESUMO

Efficient and inducible recombinase-mediated DNA excision is an optimal technology for automatically deleting unwanted DNA sequences, including selection marker genes. However, this methodology has yet to be established in transgenic silkworms. To achieve efficient and inducible FLP recombinase-mediated DNA excision in transgenic silkworms, one transgenic target strain (TTS) containing an FRT-flanked silkworm cytoplasmic actin 3 gene promoter (A3)-enhanced green fluorescent protein (EGFP) expression cassette, as well as two different types of FLP recombinase expression helper strains were generated. Then, the FLP recombinase was introduced into the TTS silkworms by pre-blastoderm microinjection and sexual hybridization. Successful recombinase-mediated deletion of the A3-EGFP expression cassette was observed in the offspring of the TTS, and the excision efficiencies of the FLP expression vector and FLP mRNA pre-blastoderm microinjection were 2.38 and 13.3 %, respectively. The excision efficiencies resulting from hybridization between the TTS and the helper strain that contained a heat shock protein 70 (Hsp70)-FLP expression cassette ranged from 32.14 to 36.67 % after heat shock treatment, while the excision efficiencies resulting from hybridization between the TTS and the helper strain containing the A3-FLP expression cassette ranged from 97.01 to 100 %. These results demonstrate that the FLP/FRT system can be used to achieve highly efficient and inducible post-integration excision of unwanted DNA sequences in transgenic silkworms in vivo. Our present study will facilitate the development and application of the FLP/FRT system for the functional analysis of unknown genes, and establish the safety of transgenic technologies in the silkworm and other lepidopteran species.


Assuntos
Actinas/genética , DNA Nucleotidiltransferases/genética , Proteínas de Choque Térmico HSP70/genética , Recombinação Genética , Animais , Animais Geneticamente Modificados/genética , Sequência de Bases/genética , Bombyx , Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA