Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 158(3): 659-72, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25083875

RESUMO

Circadian rhythms are intimately linked to cellular metabolism. Specifically, the NAD(+)-dependent deacetylase SIRT1, the founding member of the sirtuin family, contributes to clock function. Whereas SIRT1 exhibits diversity in deacetylation targets and subcellular localization, SIRT6 is the only constitutively chromatin-associated sirtuin and is prominently present at transcriptionally active genomic loci. Comparison of the hepatic circadian transcriptomes reveals that SIRT6 and SIRT1 separately control transcriptional specificity and therefore define distinctly partitioned classes of circadian genes. SIRT6 interacts with CLOCK:BMAL1 and, differently from SIRT1, governs their chromatin recruitment to circadian gene promoters. Moreover, SIRT6 controls circadian chromatin recruitment of SREBP-1, resulting in the cyclic regulation of genes implicated in fatty acid and cholesterol metabolism. This mechanism parallels a phenotypic disruption in fatty acid metabolism in SIRT6 null mice as revealed by circadian metabolome analyses. Thus, genomic partitioning by two independent sirtuins contributes to differential control of circadian metabolism.


Assuntos
Fígado/metabolismo , Sirtuínas/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Cromatina , Ritmo Circadiano , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuínas/genética , Transcrição Gênica
2.
Purinergic Signal ; 19(3): 551-564, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36781825

RESUMO

Some non-adenosinergic drugs are reported to also act through adenosine receptors (ARs). We used mouse hypothermia, which can be induced by agonism at any of the four ARs, as an in vivo screen for adenosinergic effects. An AR contribution was identified when a drug caused hypothermia in wild type mice that was diminished in mice lacking all four ARs (quadruple knockout, QKO). Alternatively, an adenosinergic effect was identified if a drug potentiated adenosine-induced hypothermia. Four drugs (dipyridamole, nimodipine, cilostazol, cyclosporin A) increased the hypothermia caused by adenosine. Dipyridamole and nimodipine probably achieved this by inhibition of adenosine clearance via ENT1. Two drugs (cannabidiol, canrenoate) did not cause hypothermia in wild type mice. Four other drugs (nifedipine, ranolazine, ketamine, ethanol) caused hypothermia, but the hypothermia was unchanged in QKO mice indicating non-adenosinergic mechanisms. Zinc chloride caused hypothermia and hypoactivity; the hypoactivity was blunted in the QKO mice. Interestingly, the antidepressant amitriptyline caused hypothermia in wild type mice that was amplified in the QKO mice. Thus, we have identified adenosine-related effects for some drugs, while other candidates do not affect adenosine signaling by this in vivo assay. The adenosine-modulating drugs could be considered for repurposing based on predicted effects on AR activation.


Assuntos
Adenosina , Hipotermia , Camundongos , Animais , Adenosina/farmacologia , Hipotermia/induzido quimicamente , Nimodipina/efeitos adversos , Receptores Purinérgicos P1 , Dipiridamol/efeitos adversos
3.
PLoS Biol ; 17(3): e3000161, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30822301

RESUMO

Adenosine is a constituent of many molecules of life; increased free extracellular adenosine indicates cell damage or metabolic stress. The importance of adenosine signaling in basal physiology, as opposed to adaptive responses to danger/damage situations, is unclear. We generated mice lacking all four adenosine receptors (ARs), Adora1-/-;Adora2a-/-;Adora2b-/-;Adora3-/- (quad knockout [QKO]), to enable investigation of the AR dependence of physiologic processes, focusing on body temperature. The QKO mice demonstrate that ARs are not required for growth, metabolism, breeding, and body temperature regulation (diurnal variation, response to stress, and torpor). However, the mice showed decreased survival starting at about 15 weeks of age. While adenosine agonists cause profound hypothermia via each AR, adenosine did not cause hypothermia (or bradycardia or hypotension) in QKO mice, indicating that AR-independent signals do not contribute to adenosine-induced hypothermia. The hypothermia elicited by adenosine kinase inhibition (with A134974), inosine, or uridine also required ARs, as each was abolished in the QKO mice. The proposed mechanism for uridine-induced hypothermia is inhibition of adenosine transport by uridine, increasing local extracellular adenosine levels. In contrast, adenosine 5'-monophosphate (AMP)-induced hypothermia was attenuated in QKO mice, demonstrating roles for both AR-dependent and AR-independent mechanisms in this process. The physiology of the QKO mice appears to be the sum of the individual knockout mice, without clear evidence for synergy, indicating that the actions of the four ARs are generally complementary. The phenotype of the QKO mice suggests that, while extracellular adenosine is a signal of stress, damage, and/or danger, it is less important for baseline regulation of body temperature.


Assuntos
Hipotermia/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Animais , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Temperatura Corporal/genética , Temperatura Corporal/fisiologia , Cafeína/farmacologia , Feminino , Genótipo , Frequência Cardíaca/genética , Frequência Cardíaca/fisiologia , Hipotermia/induzido quimicamente , Hipotermia/genética , Inosina/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Receptor A1 de Adenosina/genética , Receptor A2A de Adenosina/genética , Receptor A2B de Adenosina/genética , Receptor A3 de Adenosina/genética , Uridina/toxicidade
4.
Gastroenterology ; 154(1): 195-210, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28918914

RESUMO

BACKGROUND & AIMS: Development of hepatocellular carcinoma (HCC) is associated with alterations in the transforming growth factor-beta (TGF-ß) signaling pathway, which regulates liver inflammation and can have tumor suppressor or promoter activities. Little is known about the roles of specific members of this pathway at specific of HCC development. We took an integrated approach to identify and validate the effects of changes in this pathway in HCC and identify therapeutic targets. METHODS: We performed transcriptome analyses for a total of 488 HCCs that include data from The Cancer Genome Atlas. We also screened 301 HCCs reported in the Catalogue of Somatic Mutations in Cancer and 202 from Cancer Genome Atlas for mutations in genome sequences. We expressed mutant forms of spectrin beta, non-erythrocytic 1 (SPTBN1) in HepG2, SNU398, and SNU475 cells and measured phosphorylation, nuclear translocation, and transcriptional activity of SMAD family member 3 (SMAD3). RESULTS: We found somatic mutations in at least 1 gene whose product is a member of TGF-ß signaling pathway in 38% of HCC samples. SPTBN1 was mutated in the largest proportion of samples (12 of 202, 6%). Unsupervised clustering of transcriptome data identified a group of HCCs with activation of the TGF-ß signaling pathway (increased transcription of genes in the pathway) and a group of HCCs with inactivation of TGF-ß signaling (reduced expression of genes in this pathway). Patients with tumors with inactivation of TGF-ß signaling had shorter survival times than patients with tumors with activation of TGF-ß signaling (P = .0129). Patterns of TGF-ß signaling correlated with activation of the DNA damage response and sirtuin signaling pathways. HepG2, SNU398, and SNU475 cells that expressed the D1089Y mutant or with knockdown of SPTBN1 had increased sensitivity to DNA crosslinking agents and reduced survival compared with cells that expressed normal SPTBN1 (controls). CONCLUSIONS: In genome and transcriptome analyses of HCC samples, we found mutations in genes in the TGF-ß signaling pathway in almost 40% of samples. These correlated with changes in expression of genes in the pathways; up-regulation of genes in this pathway would contribute to inflammation and fibrosis, whereas down-regulation would indicate loss of TGF-ß tumor suppressor activity. Our findings indicate that therapeutic agents for HCCs can be effective, based on genetic features of the TGF-ß pathway; agents that block TGF-ß should be used only in patients with specific types of HCCs.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mutação/genética , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Idoso , Carcinoma Hepatocelular/mortalidade , Estudos de Casos e Controles , Análise por Conglomerados , Feminino , Humanos , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade
5.
Am J Physiol Endocrinol Metab ; 315(3): E357-E366, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29812984

RESUMO

Intraperitoneal administration of the melanocortin agonist melanotan II (MTII) to mice causes a profound, transient hypometabolism/hypothermia. It is preserved in mice lacking any one of melanocortin receptors 1, 3, 4, or 5, suggesting a mechanism independent of the canonical melanocortin receptors. Here we show that MTII-induced hypothermia was abolished in KitW-sh/W-sh mice, which lack mast cells, demonstrating that mast cells are required. MRGPRB2 is a receptor that detects many cationic molecules and activates mast cells in an antigen-independent manner. In vitro, MTII stimulated mast cells by both MRGPRB2-dependent and -independent mechanisms, and MTII-induced hypothermia was intact in MRGPRB2-null mice. Confirming that MTII activated mast cells, MTII treatment increased plasma histamine levels in both wild-type and MRGPRB2-null, but not in KitW-sh/W-sh, mice. The released histamine produced hypothermia via histamine H1 receptors because either a selective antagonist, pyrilamine, or ablation of H1 receptors greatly diminished the hypothermia. Other drugs, including compound 48/80, a commonly used mast cell activator, also produced hypothermia by both mast cell-dependent and -independent mechanisms. These results suggest that mast cell activation should be considered when investigating the mechanism of drug-induced hypothermia in mice.


Assuntos
Agonistas dos Receptores Histamínicos/farmacologia , Hipotermia/induzido quimicamente , Mastócitos/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , alfa-MSH/análogos & derivados , Animais , Liberação de Histamina/efeitos dos fármacos , Liberação de Histamina/genética , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , alfa-MSH/farmacologia
6.
Am J Physiol Heart Circ Physiol ; 310(7): H891-8, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26801314

RESUMO

Bombesin-like receptor 3 (BRS-3) is an orphan G protein-coupled receptor that regulates energy expenditure, food intake, and body weight. We examined the effects of BRS-3 deletion and activation on blood pressure and heart rate. In free-living, telemetered Brs3 null mice the resting heart rate was 10% lower than wild-type controls, while the resting mean arterial pressure was unchanged. During physical activity, the heart rate and blood pressure increased more in Brs3 null mice, reaching a similar heart rate and higher mean arterial pressure than control mice. When sympathetic input was blocked with propranolol, the heart rate of Brs3 null mice was unchanged, while the heart rate in control mice was reduced to the level of the null mice. The intrinsic heart rate, measured after both sympathetic and parasympathetic blockade, was similar in Brs3 null and control mice. Intravenous infusion of the BRS-3 agonist MK-5046 increased mean arterial pressure and heart rate in wild-type but not in Brs3 null mice, and this increase was blocked by pretreatment with clonidine, a sympatholytic, centrally acting α2-adrenergic agonist. In anesthetized mice, hypothalamic infusion of MK-5046 also increased both mean arterial pressure and heart rate. Taken together, these data demonstrate that BRS-3 contributes to resting cardiac sympathetic tone, but is not required for activity-induced increases in heart rate and blood pressure. The data suggest that BRS-3 activation increases heart rate and blood pressure via a central sympathetic mechanism.


Assuntos
Pressão Sanguínea , Frequência Cardíaca , Receptores da Bombesina/metabolismo , Sistema Nervoso Simpático/fisiologia , Adrenérgicos/farmacologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Receptores da Bombesina/genética , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo
7.
J Pharmacol Exp Ther ; 356(2): 474-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26606937

RESUMO

Adenosine can induce hypothermia, as previously demonstrated for adenosine A1 receptor (A1AR) agonists. Here we use the potent, specific A3AR agonists MRS5698, MRS5841, and MRS5980 to show that adenosine also induces hypothermia via the A3AR. The hypothermic effect of A3AR agonists is independent of A1AR activation, as the effect was fully intact in mice lacking A1AR but abolished in mice lacking A3AR. A3AR agonist-induced hypothermia was attenuated by mast cell granule depletion, demonstrating that the A3AR hypothermia is mediated, at least in part, via mast cells. Central agonist dosing had no clear hypothermic effect, whereas peripheral dosing of a non-brain-penetrant agonist caused hypothermia, suggesting that peripheral A3AR-expressing cells drive the hypothermia. Mast cells release histamine, and blocking central histamine H1 (but not H2 or H4) receptors prevented the hypothermia. The hypothermia was preceded by hypometabolism and mice with hypothermia preferred a cooler environmental temperature, demonstrating that the hypothermic state is a coordinated physiologic response with a reduced body temperature set point. Importantly, hypothermia is not required for the analgesic effects of A3AR agonists, which occur with lower agonist doses. These results support a mechanistic model for hypothermia in which A3AR agonists act on peripheral mast cells, causing histamine release, which stimulates central histamine H1 receptors to induce hypothermia. This mechanism suggests that A3AR agonists will probably not be useful for clinical induction of hypothermia.


Assuntos
Hipotermia/metabolismo , Receptor A3 de Adenosina/metabolismo , Receptores Histamínicos H1/metabolismo , Agonistas do Receptor A3 de Adenosina/farmacologia , Animais , Relação Dose-Resposta a Droga , Hipotermia/induzido quimicamente , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
8.
Mol Cell ; 32(1): 11-20, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18851829

RESUMO

Germline mutations of BRCA1 predispose women to breast and ovarian cancers. However, the downstream mediators of BRCA1 function in tumor suppression remain elusive. We found that human BRCA1-associated breast cancers have lower levels of SIRT1 than their normal controls. We further demonstrated that mammary tumors from Brca1 mutant mice have low levels of Sirt1 and high levels of Survivin, which is reversed by induced expression of Brca1. BRCA1 binds to the SIRT1 promoter and increases SIRT1 expression, which in turn inhibits Survivin by changing the epigenetic modification of histone H3. Absence of SIRT1 blocks the regulation of Survivin by BRCA1. Furthermore, we demonstrated that activation of Sirt1 and inhibition of Survivin expression by resveratrol elicit a more profound inhibitory effect on Brca1 mutant cancer cells than on Brca1-wild-type cancer cells both in vitro and in vivo. These findings suggest that resveratrol treatment serves as an excellent strategy for targeted therapy for BRCA1-associated breast cancer.


Assuntos
Genes BRCA1 , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Proteína BRCA1/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Epigênese Genética , Feminino , Mutação em Linhagem Germinativa , Humanos , Proteínas Inibidoras de Apoptose , Neoplasias Mamárias Experimentais/tratamento farmacológico , Camundongos , Camundongos Mutantes , Camundongos Nus , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Interferência de RNA , Proteínas Repressoras , Resveratrol , Sirtuína 1 , Estilbenos/farmacologia , Survivina
9.
J Biol Chem ; 289(28): 19341-50, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24872412

RESUMO

The chemical uncoupler 2,4-dinitrophenol (DNP) was an effective and widely used weight loss drug in the early 1930s. However, the physiology of DNP has not been studied in detail because toxicity, including hyperthermia and death, reduced interest in the clinical use of chemical uncouplers. To investigate DNP action, mice fed a high fat diet and housed at 30 °C (to minimize facultative thermogenesis) were treated with 800 mg/liter DNP in drinking water. DNP treatment increased energy expenditure by ∼ 17%, but did not change food intake. DNP-treated mice weighed 26% less than controls after 2 months of treatment due to decreased fat mass, without a change in lean mass. DNP improved glucose tolerance and reduced hepatic steatosis without observed toxicity. DNP treatment also reduced circulating T3 and T4 levels, Ucp1 expression, and brown adipose tissue activity, demonstrating that DNP-mediated heat generation substituted for brown adipose tissue thermogenesis. At 22 °C, a typical vivarium temperature that is below thermoneutrality, DNP treatment had no effect on body weight, adiposity, or glucose homeostasis. Thus, environmental temperature should be considered when assessing an anti-obesity drug in mice, particularly agents acting on energy expenditure. Furthermore, the beneficial effects of DNP suggest that chemical uncouplers deserve further investigation for the treatment of obesity and its comorbidities.


Assuntos
2,4-Dinitrofenol/farmacologia , Adiposidade/efeitos dos fármacos , Regulação da Temperatura Corporal/efeitos dos fármacos , Dieta/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Obesidade/tratamento farmacológico , Desacopladores/farmacologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Canais Iônicos/biossíntese , Camundongos , Proteínas Mitocondriais/biossíntese , Obesidade/induzido quimicamente , Obesidade/metabolismo , Obesidade/patologia , Proteína Desacopladora 1
10.
J Biol Chem ; 289(35): 24202-14, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25006250

RESUMO

Drug resistance and cancer metastasis are two major problems in cancer research. During a course of therapeutic treatment in Brca1-associated tumors, we found that breast cancer stem cells (CSCs) exhibit an intrinsic ability to metastasize and acquire drug resistance through distinct signaling pathways. Microarray analysis indicated that the cytoskeletal remodeling pathway was differentially regulated in CSCs, and this was further evidenced by the inhibitory role of reagents that impair this pathway in the motility of cancer cells. We showed that cisplatin treatment, although initially inhibiting cancer growth, preventing metastasis through blocking cytoskeletal remodeling, and retarding CSC motility, eventually led to drug resistance associated with a marked increase in the number of CSCs. This event was at least partially attributed to the activation of PI3K signaling, and it could be significantly inhibited by co-treatment with rapamycin. These results provide strong evidence that cytoskeletal rearrangement and PI3K/AKT signaling play distinct roles in mediating CSC mobility and viability, respectively, and blocking both pathways synergistically may inhibit primary and metastatic cancer growth.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Divisão Celular/efeitos dos fármacos , Cisplatino/farmacologia , Inibidores Enzimáticos/farmacologia , Genes BRCA1 , Metástase Neoplásica/prevenção & controle , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Humanos , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos
11.
Am J Physiol Endocrinol Metab ; 306(6): E681-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24452453

RESUMO

Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3(-/y)) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3(-/y) metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3(-/y) mice have intact thermogenic responses to stress, acute cold exposure, and ß3-adrenergic activation, and Brs3(-/y) mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3(-/y) mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3(-/y) mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação da Temperatura Corporal , Hipotálamo/metabolismo , Neurônios/metabolismo , Receptores da Bombesina/metabolismo , Sistema Nervoso Simpático/metabolismo , Termogênese , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/inervação , Agonistas de Receptores Adrenérgicos beta 3/administração & dosagem , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Resposta ao Choque Frio/efeitos dos fármacos , Cruzamentos Genéticos , Dioxóis/administração & dosagem , Dioxóis/farmacologia , Vias Eferentes/efeitos dos fármacos , Vias Eferentes/metabolismo , Metabolismo Energético/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Infusões Intravenosas , Infusões Intraventriculares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Receptores da Bombesina/agonistas , Receptores da Bombesina/genética , Sistema Nervoso Simpático/efeitos dos fármacos , Termogênese/efeitos dos fármacos
12.
Mol Metab ; 84: 101946, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657735

RESUMO

Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.


Assuntos
Temperatura Corporal , Ritmo Circadiano , Metabolismo Energético , Fotoperíodo , Ritmo Ultradiano , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiologia , Temperatura Corporal/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético/fisiologia , Sono/fisiologia , Ritmo Ultradiano/fisiologia , Vigília/fisiologia
13.
bioRxiv ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39091749

RESUMO

Across mammalian species, new mothers undergo considerable behavioral changes to nurture their offspring and meet the caloric demands of milk production1-5. While many neural circuits underlying feeding and parenting behaviors are well characterized6-9, it is unclear how these different circuits interact and adapt during lactation. Here, we characterized the transcriptomic changes in the arcuate nucleus (ARC) and the medial preoptic area (MPOA) of the mouse hypothalamus in response to lactation and hunger. Furthermore, we showed that heightened appetite in lactating mice was accompanied by increased activity of hunger-promoting agouti-related peptide (AgRP) neurons in the ARC. To assess the strength of hunger versus maternal drives, we designed a conflict assay where female mice chose between a food source or a chamber containing pups and nesting material. Although food-deprived lactating mothers prioritized parenting over feeding, hunger reduced the duration and disrupted the sequences of parenting behaviors in both lactating and virgin females. We discovered that ARCAgRP neurons directly inhibit bombesin receptor subtype-3 (BRS3) neurons in the MPOA, a population that governs both parenting and satiety. Selective activation of this ARCAgRP to MPOABRS3 circuit shifted behaviors from parenting to food-seeking. Thus, hypothalamic networks are modulated by physiological states and work antagonistically during the prioritization of competing motivated behaviors.

14.
J Biol Chem ; 287(50): 41903-13, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23076146

RESUMO

The human body has a remarkable ability to regulate inflammation, a biophysical response triggered by virus infection and tissue damage. Sirt6 is critical for metabolism and lifespan; however, its role in inflammation is unknown. Here we show that Sirt6-null (Sirt6(-/-)) mice developed chronic liver inflammation starting at ∼2 months of age, and all animals were affected by 7-8 months of age. Deletion of Sirt6 in T cells or myeloid-derived cells was sufficient to induce liver inflammation and fibrosis, albeit to a lesser degree than that in the global Sirt6(-/-) mice, suggesting that Sirt6 deficiency in the immune cells is the cause. Consistently, macrophages derived from the bone marrow of Sirt6(-/-) mice showed increased MCP-1, IL-6, and TNFα expression levels and were hypersensitive to LPS stimulation. Mechanistically, SIRT6 interacts with c-JUN and deacetylates histone H3 lysine 9 (H3K9) at the promoter of proinflammatory genes whose expression involves the c-JUN signaling pathway. Sirt6-deficient macrophages displayed hyperacetylation of H3K9 and increased occupancy of c-JUN in the promoter of these genes, leading to their elevated expression. These data suggest that Sirt6 plays an anti-inflammatory role in mice by inhibiting c-JUN-dependent expression of proinflammatory genes.


Assuntos
Regulação da Expressão Gênica , Hepatite Crônica/metabolismo , Cirrose Hepática/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais , Sirtuínas/metabolismo , Animais , Linhagem Celular Transformada , Citocinas/biossíntese , Citocinas/genética , Hepatite Crônica/genética , Hepatite Crônica/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-jun/genética , Sirtuínas/genética , Linfócitos T/metabolismo , Linfócitos T/patologia
15.
Proc Natl Acad Sci U S A ; 107(50): 21790-4, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21098266

RESUMO

In yeast, Sir2 family proteins (sirtuins) regulate gene silencing, recombination, DNA repair, and aging via histone deacetylation. Most of the seven mammalian sirtuins (Sirt1-Sirt7) have been implicated as NAD(+)-dependent protein deacetylases with targets ranging from transcriptional regulators to metabolic enzymes. We report that neural-specific deletion of sirtuin 6 (Sirt6) in mice leads to postnatal growth retardation due to somatotropic attenuation through low growth hormone (GH) and insulin-like growth factor 1 (IGF1) levels. However, unlike Sirt6 null mice, neural Sirt6-deleted mice do not die from hypoglycemia. Instead, over time, neural Sirt6-deleted mice reach normal size and ultimately become obese. Molecularly, Sirt6 deletion results in striking hyperacetylation of histone H3 lysine 9 (H3K9) and lysine 56 (H3K56), two chromatin marks implicated in the regulation of gene activity and chromatin structure, in various brain regions including those involved in neuroendocrine regulation. On the basis of these findings, we propose that Sirt6 functions as a central regulator of somatic growth and plays an important role in preventing obesity by modulating neural chromatin structure and gene activity.


Assuntos
Crescimento/fisiologia , Neurônios/fisiologia , Obesidade/fisiopatologia , Sirtuínas/metabolismo , Acetilação , Animais , Peso Corporal , Encéfalo/citologia , Encéfalo/metabolismo , Feminino , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Sirtuínas/genética
16.
PLoS One ; 18(10): e0292610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37812612

RESUMO

OBJECTIVE: Otopetrin 1 (OTOP1) is a proton channel that is highly expressed in brown adipose tissue. We examined the physiology of Otop1-/- mice, which lack functional OTOP1. METHODS: Mice were studied by indirect calorimetry and telemetric ambulatory body temperature monitoring. Mitochondrial function was measured as oxygen consumption and extracellular acidification. RESULTS: Otop1-/- mice had similar body temperatures as control mice at baseline and in response to cold and hot ambient temperatures. However, in response to fasting the Otop1-/- mice exhibited an exaggerated hypothermia and hypometabolism. Similarly, in ex vivo tests of Otop1-/- brown adipose tissue mitochondrial function, there was no change in baseline oxygen consumption, but the oxygen consumption was reduced after maximal uncoupling with FCCP and increased upon stimulation with the ß3-adrenergic agonist CL316243. Mast cells also express Otop1, and Otop1-/- mice had intact, possibly greater hypothermia in response to mast cell activation by the adenosine A3 receptor agonist MRS5698. No increase in insulin resistance was observed in the Otop1-/- mice. CONCLUSIONS: Loss of OTOP1 does not change basal function of brown adipose tissue but affects stimulated responses.


Assuntos
Hipotermia , Animais , Camundongos , Tecido Adiposo Marrom , Temperatura Corporal , Regulação da Temperatura Corporal , Jejum , Camundongos Knockout
17.
Mol Metab ; 71: 101699, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36858190

RESUMO

OBJECTIVE: Physical activity is a major component of total energy expenditure (TEE) that exhibits extreme variability in mice. Our objective was to construct a general, physiology-based model of TEE to accurately quantify the energy cost of physical activity. METHODS: Spontaneous home cage physical activity, body temperature, TEE, and energy intake were measured with frequent sampling. The energy cost of activity was modeled considering six contributors to TEE (basal metabolic rate, thermic effect of food, body temperature, cold induced thermogenesis, physical activity, and body weight). An ambient temperature of 35 °C was required to remove the contribution from cold induced thermogenesis. Basal metabolic rate was adjusted for body temperature using a Q10 temperature coefficient. RESULTS: We developed a TEE model that robustly explains 70-80% of the variance in TEE at 35 °C while fitting only two parameters, the basal metabolic rate and the mass-specific energy cost per unit of physical activity, which averaged 60 cal/km/g body weight. In Ucp1-/- mice the activity cost was elevated by 60%, indicating inefficiency and increased muscle thermogenesis. The diurnal rhythm in TEE was quantitatively explained by the combined diurnal differences in physical activity, body temperature, and energy intake. Incorporating body temperature into human basal metabolic rate measurements significantly reduced the inter-individual variation. CONCLUSIONS: The physiology-based model of TEE allows quantifying the energy cost of physical activity. While applied here to mice, the model should be generally valid across species. Due to the effect of body temperature, we suggest that basal metabolic rate measurements be corrected to a reference body temperature, including in humans. Having an accurate cost of physical activity allows mechanistic dissection of disorders of energy homeostasis, including obesity.


Assuntos
Metabolismo Basal , Metabolismo Energético , Humanos , Animais , Camundongos , Metabolismo Energético/fisiologia , Peso Corporal/fisiologia , Metabolismo Basal/fisiologia , Obesidade , Termogênese/fisiologia
18.
J Biol Chem ; 285(47): 36776-84, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20847051

RESUMO

Glucose homeostasis in mammals is mainly regulated by insulin signaling. It was previously shown that SIRT6 mutant mice die before 4 weeks of age, displaying profound abnormalities, including low insulin, hypoglycemia, and premature aging. To investigate mechanisms underlying the pleiotropic phenotypes associated with SIRT6 deficiency, we generated mice carrying targeted disruption of SIRT6. We found that 60% of SIRT6(-/-) animals had very low levels of blood glucose and died shortly after weaning. The remaining animals, which have relatively higher concentrations of glucose, survived the early post-weaning lethality, but most died within one year of age. Significantly, feeding the mice with glucose-containing water increased blood glucose and rescued 83% of mutant mice, suggesting that the hypoglycemia is a major cause for the lethality. We showed that SIRT6 deficiency results in more abundant membrane association of glucose transporters 1 and 4, which enhances glucose uptake. We further demonstrated that SIRT6 negatively regulates AKT phosphorylation at Ser-473 and Thr-308 through inhibition of multiple upstream molecules, including insulin receptor, IRS1, and IRS2. The absence of SIRT6, consequently, enhances insulin signaling and activation of AKT, leading to hypoglycemia. These data uncover an essential role of SIRT6 in modulating glucose metabolism through mediating insulin sensitivity.


Assuntos
Glucose/farmacocinética , Hipoglicemia/etiologia , Insulina/farmacologia , Sirtuínas/fisiologia , Animais , Western Blotting , Diferenciação Celular , Células Cultivadas , Feminino , Imunofluorescência , Genes Letais , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Hipoglicemia/metabolismo , Hipoglicemia/patologia , Técnicas Imunoenzimáticas , Resistência à Insulina , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Distribuição Tecidual
19.
Mol Metab ; 53: 101332, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34478905

RESUMO

OBJECTIVE: To improve understanding of mouse energy homeostasis and its applicability to humans, we quantitated the effects of housing density on mouse thermal physiology in both sexes. METHODS: Littermate wild type and Brs3-null mice were single- or group- (three per cage) housed and studied by indirect calorimetry with continuous measurement of core body temperature, energy expenditure, physical activity, and food intake. RESULTS: At 23 °C, below thermoneutrality, single-housed males had a lower body temperature and unchanged metabolic rate compared to group-housed controls. In contrast, single-housed females maintained a similar body temperature to group-housed controls by increasing their metabolic rate. With decreasing ambient temperature below 27 °C, only group-housed mice decreased their heat conductance, likely due to huddling, thus interfering with the energy expenditure vs ambient temperature relationship described by Scholander. In a hot environment (35 °C), the single-housed mice were less heat stressed. Upon fasting, single-housed mice had larger reductions in body temperature, with male mice having more torpor episodes of similar duration and female mice having a similar number of torpor episodes that lasted longer. Qualitatively, the effects of housing density on thermal physiology of Brs3-null mice generally mimicked the effects in controls. CONCLUSIONS: Single housing is more sensitive than group housing for detecting thermal physiology phenotypes. Single housing increases heat loss and amplifies the effects of fasting or a cold environment. Male and female mice utilize different thermoregulatory strategies to respond to single housing.


Assuntos
Composição Corporal/fisiologia , Temperatura Corporal , Receptores da Bombesina/metabolismo , Temperatura , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores da Bombesina/deficiência
20.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326065

RESUMO

Bombesin receptor subtype-3 (BRS3) is an orphan receptor that regulates energy homeostasis. We compared Brs3 driver mice with constitutive or inducible Cre recombinase activity. The constitutive BRS3-Cre mice show a reporter signal (Cre-dependent tdTomato) in the adult brain because of lineage tracing in the dentate gyrus, striatal patches, and indusium griseum, in addition to sites previously identified in the inducible BRS3-Cre mice (including hypothalamic and amygdala subregions, and parabrachial nucleus). We detected Brs3 reporter expression in the dentate gyrus at day 23 but not at postnatal day 1 or 5 months of age. Hypothalamic sites expressed reporter at all three time points, and striatal patches expressed Brs3 reporter at 1 day but not 5 months. Parabrachial nucleus Brs3 neurons project to the preoptic area, hypothalamus, amygdala, and thalamus. Both Cre recombinase insertions reduced Brs3 mRNA levels and BRS3 function, causing obesity phenotypes of different severity. These results demonstrate that driver mice should be characterized phenotypically and illustrate the need for knock-in strategies with less effect on the endogenous gene.


Assuntos
Integrases , Receptores da Bombesina , Animais , Encéfalo/metabolismo , Hipotálamo/metabolismo , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Receptores da Bombesina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA