Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Molecules ; 26(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466247

RESUMO

Resveratrol (3,4',5-trihy- droxystilbene), a natural phytoalexin polyphenol, exhibits anti-oxidant, anti-inflammatory, and anti-carcinogenic properties. This phytoalexin is well-absorbed and rapidly and extensively metabolized in the body. Inflammation is an adaptive response, which could be triggered by various danger signals, such as invasion by microorganisms or tissue injury. In this review, the anti-inflammatory activity and the mechanism of resveratrol modulates the inflammatory response are examined. Multiple experimental studies that illustrate regulatory mechanisms and the immunomodulatory function of resveratrol both in vivo and in vitro. The data acquired from those studies are discussed.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Resveratrol/farmacologia , Animais , Humanos , Inflamação/metabolismo , Inflamação/patologia
2.
Br J Nutr ; 123(5): 481-488, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31623699

RESUMO

The present study was conducted to evaluate the effects of glucose, soya oil or glutamine on jejunal morphology, protein metabolism and protein expression of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway in jejunal villus or crypt compartment of piglets. Forty-two 21 d-weaned piglets were randomly allotted to one of the three isoenergetic diets formulated with glucose, soya oil or glutamine for 28 d. On day 14 or 28, the proteins in crypt enterocytes were analysed with isobaric tags for relative and absolute quantification and proteins involved in mTORC1 signalling pathway in villus or crypt compartment cells were determined by Western blotting. Our results showed no significant differences (P > 0·05) in jejunal morphology among the three treatments on day 14 or 28. The differentially expressed proteins mainly took part in a few network pathways, including antimicrobial or inflammatory response, cell death and survival, digestive system development and function and carbohydrate metabolism. On day 14 or 28, there were higher protein expression of eukaryotic initiation factor-4E binding protein-1 in jejunal crypt compartment of piglets supplemented with glucose or glutamine compared with soya oil. On day 28, higher protein expression of phosphor-mTOR in crypt compartment was observed in piglets supplemented with glucose compared with the soya oil. In conclusion, the isoenergetic glucose, soya oil or glutamine did not affect the jejunal morphology of piglets; however, they had different effects on the protein metabolism in crypt compartment. Compared with soya oil, glucose or glutamine may be better energy supplies for enterocytes in jejunal crypt compartment.


Assuntos
Suplementos Nutricionais , Glucose/farmacologia , Glutamina/farmacologia , Óleo de Soja/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Enterócitos/metabolismo , Jejuno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suínos , Desmame
3.
J Anim Physiol Anim Nutr (Berl) ; 103(6): 1934-1945, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31478262

RESUMO

This study was conducted to evaluate the effect of mulberry leaves as an alternative source of protein on growth performance, carcass traits and meat quality in finishing pigs. A total of 180 Xiangcun Black pigs were randomly assigned to five treatment groups with six pens of six pigs per pen. The pigs were provided with a basal diet or a diet contained 3%, 6%, 9% or 12% of mulberry leaf powder during a 50-day experiment period. The results showed that dietary mulberry leaf powder had no negative effect on growth performance in Xiangcun Black pigs, except in the 12% mulberry group, where final body weight and average daily gain decreased (p < .05) and feed to gain ratio of the pigs increased (p < .05). Dietary mulberry inclusion decreased (quadratic, p < .05) the back fat thickness, fibre mean cross-sectional area (CSA) in the longissimus dorsi (LD) muscle and mRNA expression levels of myosin heavy chain (MyHC) IIb in LD and biceps femoris (BF) muscles, while increased (linear or quadratic, p < .05) the plasma concentration of albumin, levels of crude protein (CP), inosine monophosphate (IMP) and several amino acids in muscle tissues. When compared with the other groups, the 9% mulberry diet increased (p < .05) loin-eye area and contents of CP and IMP in muscles, while decreased (p < .05) plasma activity of cholinesterase and concentrations of uric acid and urea. The 6% mulberry diet had the lowest fibre mean CSA and shear force and increased total fibre number of the LD muscle, when compared with the other groups. These results suggest that including mulberry in the diet at <12% is an effective feed crop to improve meat quality and the chemical composition of muscle without negatively affecting growth performance.


Assuntos
Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Carne/normas , Morus/química , Folhas de Planta/química , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Peso Corporal , Dieta , Masculino , Suínos
4.
Eat Weight Disord ; 24(3): 385-395, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30498989

RESUMO

Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) has gained popularity as a very attractive target for diabetic therapies due to its role in lipid and glucose metabolism. Pharmacological activation of PGC-1α is thought to elicit health benefits. However, this notion has been questioned by increasing evidence, which suggests that insulin resistant is exacerbated when PGC-1α expression is far beyond normal physiological limits and is prevented under the condition of PGC-1α deficiency. This narrative review suggests that PGC-1α, as a master metabolic regulator, exerts roles in insulin sensitivity in a tissue-specific manner and in a physical activity/age-dependent fashion. When using PGC-1α as a target for therapeutic strategies against insulin resistance and T2DM, we should take these factors into consideration.Level of evidence: Level V, narrative review.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo
5.
Amino Acids ; 49(12): 2023-2031, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28861626

RESUMO

The synthetic dipeptides alanyl-glutamine (Ala-Gln) and glycyl-glutamine (Gly-Gln) are used as Gln substitution to provide energy source in the gastrointestinal tract due to their high solubility and stability. This study aimed to investigate the effects of Gln, Ala-Gln and Gly-Gln on mitochondrial respiration and protein turnover of enterocytes. Intestinal porcine epithelial cells (IPEC-J2) were cultured for 2 days in Dulbecco's modified Eagle's-F12 Ham medium (DMEM-F12) containing 2.5 mM Gln, Ala-Gln or Gly-Gln. Results from 5-ethynyl-2'-deoxyuridine incorporation and flow cytometry analysis indicated that there were no differences in proliferation between free Gln and Ala-Gln-treated cells, whereas Gly-Gln treatment inhibited the cell growth compared with Gln treatment. Significantly lower mRNA expressions of Sp1 and PepT1 were also observed in Gly-Gln-treated cells than that of Ala-Gln treatment. Ala-Gln treatment increased the basal respiration and ATP production, compared with free Gln and Gly-Gln treatments. There were no differences in protein turnover between free Gln and Ala-Gln-treated cells, but Gly-Gln treatment reduced protein synthesis and increased protein degradation. Ala-Gln treatment stimulated mTOR activation whereas Gly-Gln decreased mTOR phosphorylation and increased the UB protein expression compared with free Gln treatment. These results indicate that Ala-Gln has the very similar functional profile to free Gln in porcine enterocytes in vitro and can be substituted Gln as energy and protein sources in the gastrointestinal tract.


Assuntos
Dipeptídeos/farmacologia , Enterócitos/efeitos dos fármacos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Enterócitos/citologia , Enterócitos/metabolismo , Glutamina/análogos & derivados , Glutamina/farmacologia , Técnicas In Vitro , Suínos
6.
Amino Acids ; 48(9): 2067-80, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27161106

RESUMO

L-Glutamine is a nutritionally semi-essential amino acid for proper growth in most cells and tissues, and plays an important role in the determination and guarding of the normal metabolic processes of the cells. With the help of transport systems, extracellular L-glutamine crosses the plasma membrane and is converted into alpha-ketoglutarate (AKG) through two pathways, namely, the glutaminase (GLS) I and II pathway. Reversely, AKG can be converted into glutamine by glutamate dehydrogenase (GDH) and glutamine synthetase (GS), or be converted into CO2 via the tricarboxylic acid (TCA) cycle and provide energy for the cells. Different steps of glutamine metabolism (the glutamine-AKG axis) are regulated by several factors, rendering the glutamine-AKG axis a potential target to counteract cancer. Moreover, intracellular glutamine plays an important role in cellular homeostasis not only as a precursor for protein synthesis, but also for its nutritional roles in cell growth, lipid metabolism, insulin secretion, and so on. The main objective of this review is to highlight the metabolic pathways of glutamine to AKG, with special emphasis on nutritional and therapeutic use of glutamine-AKG axis to improve the health and well-being of animals and humans.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Glutamina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Transaminases/metabolismo , Animais , Humanos
7.
Asian-Australas J Anim Sci ; 28(11): 1573-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26580281

RESUMO

This study was to investigate the effect of soyabean isoflavones (SIF) on onset of puberty, serum hormone concentration, and gene expression in hypothalamus, pituitary and ovary of female Bama miniature pigs. Fifty five, 35-days old pigs were randomly assigned into 5 treatment groups consisting of 11 pigs per treatment. Results showed that dietary supplementation of varying dosage (0, 250, 500, and 1,250 mg/kg) of SIF induced puberty delay of the pigs with the age of puberty of pigs fed basal diet supplemented with 1,250 mg/kg SIF was significantly higher (p<0.05) compared to control. Supplementation of SIF or estradiol valerate (EV) reduced (p<0.05) serum gonadotrophin releasing hormone and luteinizing hormone concentration, but increased follicle-stimulating hormone concentration in pigs at 4 months of age. The expression of KiSS-1 metastasis-suppressor (KISS1), steroidogenic acute regulatory protein (StAR) and 3-beta-hydroxysteroid dehydrogenase/delta-5-delta-4 isomerase (3ß-HSD) was reduced (p<0.01) in SIF-supplemented groups. Expression of gonadotropin-releasing hormone receptor in the pituitary of miniature pigs was reduced (p<0.05) compared to the control when exposed to 250, 1,250 mg/kg SIF and EV. Pigs on 250 mg/kg SIF and EV also showed reduced (p<0.05) expression of cytochrome P450 19A1 compared to the control. Our results indicated that dietary supplementation of SIF induced puberty delay, which may be due to down-regulation of key genes that play vital roles in the synthesis of steroid hormones.

8.
Animals (Basel) ; 14(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672376

RESUMO

The gastrointestinal tract plays crucial roles in the digestion and absorption of nutrients, as well as in maintenance of a functional barrier. The development and maturation of the intestine is important for piglets to maintain optimal growth and health. Polyamines are necessary for the proliferation and growth of enterocytes, which play a key role in differentiation, migration, remodeling and integrity of the intestinal mucosa after injury. This review elaborates the development of the structure and function of the intestine of piglets during embryonic, suckling and weaning periods, the utilization and metabolism of polyamines in the intestine, as well as the role of polyamines in intestinal development and mucosal repair. The nutritional intervention to improve intestinal development and functions by modulating polyamine metabolism in piglets is also put forward. These results may help to promote the adaption to weaning in pigs and provide useful information for the development and health of piglets.

9.
Animals (Basel) ; 14(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891704

RESUMO

The study aimed to investigate the effect of dietary chitosan oligosaccharides (COS) meal levels on the nutrient disappearance rate, rumen fermentation, and microflora of beef cattle in vitro. A total of 24 fermentation tanks were randomly divided into four treatments containing 0% COS (CON), 0.02% COS, 0.04% COS, and 0.08% COS for an 8-day experiment period, with each treatment comprising six replicates. The disappear rates of DM, CP, EE, and total gas production were quadratically increased with increasing COS levels. The disappear rates of DM, CP, EE, and ADF were greatest, whereas the total gas production was lowest in the 0.08% COS group. The pH, NH3-N, MCP, the content of propionate, isobutyrate, butyrate, valerate, and the A/P were quadratically increased with increasing COS levels, while the A/P were linearly decreased. The pH, MCP, and the content of propionate, and butyrate were highest, whereas the NH3-N and the content of acetate, isobutyrate, valerate, and the A/P were lowest in the 0.08% COS group. Microbiomics analysis showed that the rumen microbial diversity was not altered between the CON and the 0.08% COS group. However, the relative abundance of Methanosphaera, Ruminococcus, Endomicrobium, and Eubacterium groups was increased, and the relative abundance of pathogenic bacteria Dorea and Escherichia-Shigella showed a decrease in the 0.08% COS group. Overall, the 0.08% COS was the most effective among the three addition levels, resulting in an increase in the disappearance rate of in vitro fermented nutrients and improvements in rumen fermentation indexes and microbial communities. This, in turn, led to the maintenance of rumen health.

10.
Int Immunopharmacol ; 126: 111153, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37979451

RESUMO

To investigate the regulatory effects of Chito-oligosaccharide (COS) on the anti-oxidative, anti-inflammatory, and MAPK signaling pathways. A total of 40 28-day-old weaned piglets were randomly allotted to 4 equal groups [including the control group, lipopolysaccharide (LPS) group, COS group, and COS*LPS group]. On the morning of d 14 and 21, piglets were injected with saline or LPS. At 2 h post-injection, whole blood samples were collected on d 14 and 21, and small intestine and liver samples were collected and analyzed on d 21. The results showed that COS inhibited the LPS-induced increase of malondialdehyde (MDA) concentration and hepatic TNF-α cytokines. COS significantly increased the serum total antioxidant capability (T-AOC) value on d 14, and total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX) activities in both serum and liver on d 21. Furthermore, it increased hepatic catalase (CAT) activity. COS also increased the LPS-induced decrease in serum IgG concentrations. Immunohistochemical analysis results showed that COS significantly increased the jejunal and ileal Caspase 3, and ileal CD4+ values challenged by LPS. Dietary COS decreased the LPS-induced jejunal and ileal BAX and CCL2 mRNA levels, markedly decreased ileal COX2 and SOD1 mRNA levels, while increasing ileal iNOS. Furthermore, COS significantly increased the LPS-induced jejunal and ileal p-P38 and MyD88, as well as jejunal P38, while it effectively suppressed jejunal JNK1, and jejunal and ileal JNK2, p-JNK1, and p-JNK2 protein expressions. These results demonstrated that COS could be beneficial by attenuating LPS-challenged intestinal inflammation via regulating mitochondrial apoptotic and MAPK signaling pathways.


Assuntos
Lipopolissacarídeos , Transdução de Sinais , Animais , Suínos , Lipopolissacarídeos/farmacologia , Antioxidantes/metabolismo , RNA Mensageiro/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Oligossacarídeos , Suplementos Nutricionais/análise
11.
Animals (Basel) ; 13(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627453

RESUMO

Biological feed is a feed product developed through bioengineering technologies such as fermentation engineering, enzyme engineering, protein engineering, and genetic engineering. It possesses functional characteristics of high nutritional value and good palatability that can improve feed utilization, replace antibiotics, enhance the health level of livestock and poultry, improve the quality of livestock products, and promote a better breeding environment. A comprehensive review is provided on the types of biological feed, their mechanism of action, fermenting strains, fermenting raw material resources, and their current status in animal production to facilitate in-depth research and development of applications.

12.
Front Vet Sci ; 10: 1185191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377951

RESUMO

The purpose of this study is to reveal the effects of different particle sizes of rice straw on the rumen protozoa count, nutrient disappearance rate, rumen fermentation, and microbial community in a rumen simulation technique (RUSITEC) system. In this experiment, a single-factor random trial design was adopted. According to the different particle sizes of rice straw, there were three treatments with three replies in each treatment. Three kinds of goat total mixed ration (TMR), with the same nutrients were used to carry out a 10 days in vitro fermentation experiment using the rumen simulation system developed by Hunan Agricultural University, including 6 days the pretrial period and 4 days formal period. This study found that the organic matter disappearance rate, concentrations of total volatile fatty acids (VFAs), acetate, propionate, and iso-butyrate were greatest in the 4 mm group (p < 0.05). There were no significant differences in the alpha diversity, among the three groups (p > 0.05). The relative abundance of Treponema and Ruminococcus of the 2 mm group increased; the relative abundance of Butyrivibrio and Prevotella in samples increased in the 4 mm group. In addition, the results of correlation analysis showed that Prevotella and Ruminococcus was positively correlated with butyrate, ammonia-N, dOM and d ADF (p < 0.05) and negatively correlated with valerate (p < 0.05); Oscillospira was positively correlated with valerate (p < 0.01) and negatively correlated with propionate, butyrate, ammonia-N, dOM and dADF (p < 0.05). The present results imply that compared to the other groups, rice straw particle size of 4 mm may improve the disappearance rate of nutrients and promote the production of volatile fatty acids by regulating ruminal microorganisms.

13.
Front Microbiol ; 14: 1101620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228367

RESUMO

Introduction: The Tibetan Plateau is characterized by low temperature and hypoxia. N-carbamylglutamic acid (NCG) can increase blood oxygen saturation, and have the potential to be used to prevent the high-altitude hypoxia stress state of cows. However, its beneficial effect on the rumen microbiota of Holstein dairy cows remains unclear. Methods: Hence, the experiments 12 multiparous (parity ranged from 2 to 7) Holstein dairy cows (413.0 ± 42 kg) were randomly assigned to 2 treatments with 6 replicates in each treatment: basal diet (CON, control group) and basal diet plus 20 g/d/cow of NCG (NCG, experiment group), respectively. To study the effects of dietary NCG supplementation on rumen microbiota of Holstein dairy cows in Tibet. The experiment lasted for 45 days, with 15 days of pre-feeding and 30 days of formal trail period. Results: The results showed that ruminal NH3-N concentration in NCG group was lower (p < 0.05) than that in the CON group, while molar proportion of acetic acid and total volatile fatty acid (VFA) concentration were increased (p < 0.05) with the addition of NCG. Microbial diversity increased (p < 0.05) in NCG group, with Bacteroidetes, Firmicutes, and Patescibacteria as the most abundant phyla. The KEGG pathway analysis showed that the potential function of ruminal bacteria was mainly enriched in metabolism (carbohydrates, amino acids, lipids, energy, and nucleotides) and genetic information processing (replication, repair, and translation). Conclusion: In conclusion, NCG can improve rumen nitrogen utilization, total VFA and acetic acid production, and increase rumen microbial diversity, all of which could make the introduced Holstein dairy cows to better adapt to the harsh environment in Tibet and improve their production performance.

14.
In Vitro Cell Dev Biol Anim ; 59(4): 264-276, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37173557

RESUMO

Resveratrol (Res) is a bioactive dietary component and alleviates apoptosis in multiple cell types. However, its effect and mechanism on lipopolysaccharide (LPS)-induced bovine mammary epithelial cells (BMEC) apoptosis, which commonly happens in dairy cows with mastitis, is unknown. We hypothesized that Res would inhibit LPS-induced apoptosis in BMEC through SIRT3, a NAD + -dependent deacetylase activated by Res. To test the dose-response effect on apoptosis, 0-50 µM Res were incubated with BMEC for 12 h, followed by 250 µg/mL LPS treatment for 12 h. To investigate the role of SIRT3 in Res-mediated alleviation of apoptosis, BMEC were pretreated with 50 µM Res for 12 h, then incubated with si-SIRT3 for 12 h and were finally treated with 250 µg/mL LPS for 12 h. Res dose-dependently promoted the cell viability and protein levels of Bcl-2 (Linear P < 0.001) but decreased protein levels of Bax, Caspase-3 and Bax/Bcl-2 (Linear P < 0.001). TUNEL assays indicated that cellular fluorescence intensity declined with the rising doses of Res. Res also dose-dependently upregulated SIRT3 expression, but LPS had the opposite effect. SIRT3 silencing abolished these results with Res incubation. Mechanically, Res enhanced the nuclear translocation of PGC1α, the transcriptional cofactor for SIRT3. Further molecular docking analysis revealed that Res could directly bind to PGC1α by forming a hydrogen bond with Tyr-722. Overall, our data suggested that Res relieved LPS-induced BMEC apoptosis through the PGC1α-SIRT3 axis, providing a basis for further in vivo investigations of applying Res to relieve mastitis in dairy cows.


Assuntos
Doenças dos Bovinos , Mastite , Sirtuína 3 , Feminino , Bovinos , Animais , Resveratrol/farmacologia , Resveratrol/metabolismo , Lipopolissacarídeos/toxicidade , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Simulação de Acoplamento Molecular , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteína X Associada a bcl-2/metabolismo , Glândulas Mamárias Animais/metabolismo , Células Epiteliais/metabolismo , Mastite/metabolismo , Apoptose
15.
Front Microbiol ; 14: 1282767, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075859

RESUMO

This study was conducted to compare the effects of rumen-protected (RP-Leu) and unprotected L-leucine (RU-Leu) on the fermentation parameters, bacterial composition, and amino acid metabolism in vitro rumen batch incubation. The 5.00 g RP-Leu or RU-Leu products were incubated in situ in the rumen of four beef cattle (Bos taurus) and removed after 0, 2, 4, 6, 12, 16, and 24 h to determine the rumen protection rate. In in vitro incubation, both RP-Leu and RU-Leu were supplemented 1.5 mmol/bottle (L-leucine HCl), and incubated after 0, 2, 4, 6, 8, 12, and 16 h to measure gas production (GP), nutrient degradability, fermentation parameters, bacterial composition, and amino acids metabolism. Results from both in vitro and in situ experiments confirmed that the rumen protection rate was greater (p < 0.01) in RP-Leu than in RU-Leu, whereas the latter was slow (p < 0.05) degraded within incubation 8 h. Free leucine from RP-Leu and RU-Leu reached a peak at incubation 6 h (p < 0.01). RU-Leu supplementation increased (p < 0.05) gas production, microbial crude protein, branched-chain AAs, propionate and branched-chain VFAs concentrations, and Shannon and Sobs index in comparison to the control and RP-Leu supplementation. RU-Leu and RP-Leu supplementation decreased (p < 0.05) the relative abundance of Bacteroidota, which Firmicutes increased (p < 0.05). Correlation analysis indicated that there are 5 bacteria at the genus level that may be positively correlated with MCP and propionate (p < 0.05). Based on the result, we found that RP-Leu was more stable than RU-Leu in rumen fluid, but RU-Leu also does not exhibit rapid degradation by ruminal microbes for a short time. The RU-Leu was more beneficial in terms of regulating rumen fermentation pattern, microbial crude protein synthesis, and branched-chain VFAs production than RP-Leu in vitro rumen conditions.

16.
Microbiome ; 11(1): 264, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007451

RESUMO

BACKGROUND: Compared to that of bacteria, the role of gut fungi in obesity development remains unknown. RESULTS: Here, alterations in gut fungal biodiversity and composition were confirmed in obese pig models and high-fat diet (HFD)-fed mice. Antifungal drugs improved diet-induced obesity, while fungal reconstruction by cohousing or fecal microbiota transplantation maintained the obese phenotype in HFD-fed mice. Fungal profiling identified 5 fungal species associated with obesity. Specifically, Ascomycota_sp. and Microascaceae_sp. were reduced in obese mice and negatively correlated with fat content. Oral supplementation with fungi was sufficient to prevent and treat diet-induced obesity. Clec7a, which is involved in fungal recognition, was highly expressed in HFD-fed mice. The Clec7a agonist accelerated diet-induced obesity, while Clec7a deficieny in mice resulted in resistance to diet-induced obesity and blocked the anti-obese effect of antifungal drugs and fungi. CONCLUSIONS: Taken together, these results indicate that gut fungi/Clec7a signaling is involved in diet-induced obesity and may have therapeutic implications as a biomarker for metabolic dysregulation in humans. Video Abstract.


Assuntos
Antifúngicos , Obesidade , Animais , Humanos , Camundongos , Dieta Hiperlipídica/efeitos adversos , Fungos , Lipídeos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Suínos
17.
J Agric Food Chem ; 71(48): 18674-18684, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37982580

RESUMO

Branched-long-chain monomethyl fatty acids (BLCFA) are consumed daily in significant amounts by humans in all stages of life. BLCFA are absorbed and metabolized in human intestinal epithelial cells and are not only oxidized for energy. Thus far, BLCFA have been revealed to possess versatile beneficial bioactivities, including cytotoxicity to cancer cells, anti-inflammation, lipid-lowering, reducing the risk of metabolic disorders, maintaining normal ß cell function and insulin sensitivity, regulation of development, and mitigating cerebral ischemia/reperfusion injury. However, compared to other well-studied dietary fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), BLCFA has received disproportionate attention despite their potential importance. Here we outlined the major food sources, estimated intake, absorption, and metabolism in human cells, and bioactive properties of BLCFA with a focus on the bioactive mechanisms to advocate for an increased commitment to BLCFA investigations. Humans were estimated to absorb 6-5000 mg of dietary BLCFA daily from fetus to adult. Notably, iso-15:0 inhibited the growth of prostate cancer, liver cancer and T-cell non-Hodgkin lymphomas in rodent models at the effective doses of 35-105 mg/kg/day, 70 mg/kg/day, and 70 mg/kg/day, respectively. Feeding formula prepared with 20% w/w BLCFA mixture to neonatal rats with enterocolitis mitigated the intestine inflammation. Iso-15:0 at doses of 10, 40, and 80 mg/kg relieved brain ischemia/reperfusion injury in rats. In the future, it is crucial to conduct research to establish the epidemiology of BLCFA intake and their impacts on health outcomes in humans as well as to fully uncover the underlying mechanisms for their bioactivities.


Assuntos
Ácidos Graxos Ômega-3 , Traumatismo por Reperfusão , Masculino , Adulto , Humanos , Ratos , Animais , Ácidos Graxos/metabolismo , Ácido Eicosapentaenoico , Ácidos Docosa-Hexaenoicos/metabolismo , Dieta
18.
Front Nutr ; 9: 821272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651504

RESUMO

Resveratrol (RSV) is a natural polyphenolic compound with potent antioxidant and anti-inflammatory properties. This study aimed to investigate the protective effects of RSV supplementation on the inflammatory responses of broilers during heat stress. A total of 432 28-d-old white-feathered broilers (817 crossbred chicken) with an average weight of 549 ± 4 g were randomly allotted to 4 equal groups (Half male and half female, 6 replicates/group, 18 chickens/replicate), including normal temperature (NT) group (24 ± 2°C for 24 h/d, basal diet), NT+RSV group (24 ± 2°C for 24 h/d, basal diet + RSV), heat stress (HT) group (37 ± 2°C for 8 h/d, basal diet), and HT+RSV group (37 ± 2°C for 8 h/d, basal diet + RSV). Serum samples were collected on d 7 and 14 of heat stress, and thymus, spleen, jejunum, and bursa of Fabricius samples were collected and analyzed on d14. RSV treatment decreased the feed conversion ratio, partially reversed the negative alternations in body weight, average daily gain, and average daily feed intake caused by heat stress. RSV treatment also decreased the elevated levels of corticosterone on d 14, adrenocorticotropic hormone, and triiodothyronine in serum on d 7 caused by heat stress, and significantly increased the villus height to crypt depth ratio in the jejunum on d 14. Dietary RSV also reduced heat stress-induced splenic pro-inflammatory cytokine concentrations. TUNEL assay showed that RSV significantly reduced heat stress-induced the number of apoptotic cells. Remarkably, RSV down-regulated some splenic related genes for apoptosis genes, including BCL-2, Apaf-1, and MDM2 mRNA levels induced by heat stress. According to GO and KEGG enrichment analyses, the differential genes between HT and HT + RSV groups were mainly associated with immune system process, hematopoietic or lymphoid organ development, and toll-like receptor signaling pathway. The relative mRNA expression of NF-κB, heat shock protein 70 (HSP70), and p38 MAPK were markedly decreased by the combination of RSV and heat stress. These findings showed that RSV might reduce the splenic inflammatory response in heat-stressed white-feather broilers by inhibiting heat stress-induced activation of NF-B, MAPK, and HSP70, as well as inhibiting the activation of mitochondrial apoptotic pathways.

19.
Poult Sci ; 101(7): 101939, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35691048

RESUMO

The purpose of this experiment was to study the effects of fenugreek seed extract (FSE) on the growth performance, intestinal morphology, intestinal immunity and cecal micro-organisms in yellow-feathered broilers. A total of 240 one-day-old male yellow-feathered broilers were selected and randomly assigned to four treatments with 6 replicates per group and ten broilers per replicate. Started from the third day, birds were fed with basal diet (CON group) or basal diet supplemented with 30 mg/kg Zinc bacitracin (ZB group), or basal diet supplemented with 50 (D-FSE group) or 100 (H-FSE group) mg/kg FSE, respectively. The experiment lasted for 56 d. The results showed that dietary FSE supplementation improved average daily weight gain (ADG) and ratio of feed to weight gain (F: G) (P < 0.01), increased intestinal villus height (VH), villus height to crypt depth ratio (V/C) (P < 0.05), serum concentrations of IL-10, and the contents of secretory immunoglobulin A (sIgA) (P < 0.05), as well as decreased the activity of iNOS (P < 0.05). The high-throughput sequencing results showed that dietary FSE supplementation increased the alpha diversity of cecal microbes, and Firmicutes, Bacteroidetes, Verrucomicrobia and Proteobacteria taken up 95% of all phyla detected, FSE significantly reduced Campylobacter, Synergistes, and Lachnoclostridium abundance (P ≤ 0.05). There were significant difference in more than 30 KEGG pathways between FSE added group and control group or ZB group. FSE supplementation, in other words, maintained gut microbiota homeostasis while improving broiler growth performance. As a result, FSE has the potential to replace prophylactic antibiotic use in poultry production system.


Assuntos
Trigonella , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Galinhas , Dieta/veterinária , Suplementos Nutricionais , Masculino , Extratos Vegetais/farmacologia , Aumento de Peso
20.
Front Vet Sci ; 9: 882754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812848

RESUMO

In order to study the regulation of Fenugreek seed extract (FSE) on the immunity of broilers, and explore the appropriate amount of FSE in broilers' production, 1-day-old yellow feather broilers with a total of 420 birds were randomly allocated into seven treatments. Each treatment had six replicates, with 10 birds per replicate. The two control groups were the basic fodder group fed with basal diet and the bacitracin zinc group added 30 mg/kg bacitracin zinc to the basal diet. Experimental groups included five levels of FSE (50, 100, 200, 400, and 800 mg/kg FSE to the basal diet, respectively). The pre-test period was 7 days and the formal test lasted for 56 days. The results showed that the average daily gain (ADG) of 50 and 800 mg/kg FSE groups was significantly increased (P < 0.01), and the feed to gain ratio (F/G) of FSE groups was significantly decreased (P < 0.01) compared with the basic fodder and the bacitracin zinc groups. Compared with the basic fodder group, the serum total cholesterol (TC) content in the FSE groups was significantly decreased (P < 0.05), the serum low density lipoprotein cholesterol (LDL-C) content of 50, 100, and 800 mg/kg FSE groups was significantly lower than that of the basic fodder group (P < 0.05). Compared with the basic fodder and bacitracin zinc groups, the serum immunoglobulins (IgG, IgM, IgA) content of 100 and 200 mg/kg FSE groups were significantly increased (P < 0.05). Compared with the bacitracin zinc group, the serum interleukins (IL-1, IL-10) content of 400 mg/kg FSE group were significantly increased (P ≤ 0.05), and the serum interferon-γ (IFN-γ) content of 100 and 200 mg/kg FSE groups was significantly increased (P < 0.05). Compared with the basic fodder group, the lower doses (0-400 mg/kg) of FSE had no significant effect on the mRNA expression of toll-like receptors 4/ myeloid differentiation factor 88/ nuclear factor-κB (TLR4/MyD88/NF-κB) signaling pathways (P > 0.05). The 800 mg/kg FSE treatment group significantly increased the expression levels of nuclear factor-κB (NF-κB) mRNA in the spleen of broilers (P < 0.05). The zinc bacitracin group significantly increased the expression levels of myeloid differentiation factor 88 (MyD88) and nuclear factor-κB (NF-κB) mRNA (P ≤ 0.05). The results showed that FSE could promote the secretion of immunoglobulins, regulate the body's cytokines, and have a positive effect on immunity in broilers. Furthermore, the recommended supplement of FSE is 100 mg/kg in the broiler diet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA