Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 116(5): 110883, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38857813

RESUMO

Pigmented potato tubers are abundant in chlorogenic acids (CGAs), a metabolite with pharmacological activity. This article comprehensively analyzed the transcriptome and metabolome of pigmented potato Huaxingyangyu and Jianchuanhong at four altitudes of 1800 m, 2300 m, 2800 m, and 3300 m. A total of 20 CGAs and intermediate CGA compounds were identified, including 3-o-caffeoylquinic acid, 4-o-caffeoylquinic acid, and 5-o-caffeoylquinic acid. CGA contents in Huaxinyangyu and Jianchuanhong reached its maximum at an altitude of 2800 m and slightly decreased at 3300 m. 48 candidate genes related to the biosynthesis pathway of CGAs were screened through transcriptome analysis. Weighted gene co-expression network analysis (WGCNA) identified that the structural genes of phenylalanine deaminase (PAL), coumarate-3 hydroxylase (C3H), cinnamic acid 4-hydroxylase (C4H) and the transcription factors of MYB and bHLH co-regulate CGA biosynthesis. The results of this study provide valuable information to reveal the changes in CGA components in pigmented potato at different altitudes.


Assuntos
Altitude , Ácido Clorogênico , Metaboloma , Solanum tuberosum , Transcriptoma , Solanum tuberosum/metabolismo , Solanum tuberosum/genética , Ácido Clorogênico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentação/genética
2.
BMC Genomics ; 25(1): 283, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500027

RESUMO

MYB transcription factors play an extremely important regulatory role in plant responses to stress and anthocyanin synthesis. Cloning of potato StMYB-related genes can provide a theoretical basis for the genetic improvement of pigmented potatoes. In this study, two MYB transcription factors, StMYB113 and StMYB308, possibly related to anthocyanin synthesis, were screened under low-temperature conditions based on the low-temperature-responsive potato StMYB genes family analysis obtained by transcriptome sequencing. By analyzed the protein properties and promoters of StMYB113 and StMYB308 and their relative expression levels at different low-temperature treatment periods, it is speculated that StMYB113 and StMYB308 can be expressed in response to low temperature and can promote anthocyanin synthesis. The overexpression vectors of StMYB113 and StMYB308 were constructed for transient transformation tobacco. Color changes were observed, and the expression levels of the structural genes of tobacco anthocyanin synthesis were determined. The results showed that StMYB113 lacking the complete MYB domain could not promote the accumulation of tobacco anthocyanins, while StMYB308 could significantly promote the accumulation involved in tobacco anthocyanins. This study provides a theoretical reference for further study of the mechanism of StMYB113 and StMYB308 transcription factors in potato anthocyanin synthesis.


Assuntos
Solanum tuberosum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Antocianinas , Temperatura , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
3.
Plant Cell Physiol ; 65(7): 1184-1196, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38625713

RESUMO

Altitude is an important ecological factor affecting plant physiology and ecology, material metabolism and gene expression. Tuber color changes were observed in purple and red potatoes growing at four different elevations ranging from 1,800 ± 50 to 3,300 ± 50 m in the Tiger Leaping Gorge area of Yunnan Province. The results showed that the total phenol content, total flavone content, total anthocyanin content and biological yield of anthocyanin increased with increasing altitude until 2,800 ± 50 m, and the highest anthocyanin content were detected in the purple potato Huaxinyangyu and the red potato Jianchuanhong at the flowering stage and budding stage, respectively. Combined transcriptomic and metabolomic analyses revealed that the content and diversity of flavonoids are associated with genes expression via the promotion of propane metabolism to improve potato adaptation to different altitudes. These results provide a foundation for understanding the coloring mechanism and creating new potato germplasms with high resistance and good quality via genetic manipulation.


Assuntos
Altitude , Antocianinas , Flavonoides , Regulação da Expressão Gênica de Plantas , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Flavonoides/metabolismo , Antocianinas/metabolismo , Pigmentação , Adaptação Fisiológica/genética , Tubérculos/metabolismo , Tubérculos/genética , Tubérculos/química , Transcriptoma
4.
BMC Plant Biol ; 24(1): 274, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605295

RESUMO

Temperature is one of the important environmental factors affecting plant growth, yield and quality. Moreover, appropriately low temperature is also beneficial for tuber coloration. The red potato variety Jianchuanhong, whose tuber color is susceptible to temperature, and the purple potato variety Huaxinyangyu, whose tuber color is stable, were used as experimental materials and subjected to 20 °C (control check), 15 °C and 10 °C treatments during the whole growth period. The effects of temperature treatment on the phenotype, the expression levels of structural genes related to anthocyanins and the correlations of each indicator were analyzed. The results showed that treatment at 10 °C significantly inhibited the potato plant height, and the chlorophyll content and photosynthetic parameters in the leaves were reduced, and the enzyme activities of SOD and POD were significantly increased, all indicating that the leaves were damaged. Treatment at 10 °C also affected the tuberization of Huaxinyangyu and reduced the tuberization and coloring of Jianchuanhong, while treatment at 15 °C significantly increased the stem diameter, root-to-shoot ratio, yield and content of secondary metabolites, especially anthocyanins. Similarly, the expression of structural genes were enhanced in two pigmented potatoes under low-temperature treatment conditions. In short, proper low temperature can not only increase yield but also enhance secondary metabolites production. Previous studies have not focused on the effects of appropriate low-temperature treatment during the whole growth period of potato on the changes in metabolites during tuber growth and development, these results can provide a theoretical basis and technical guidance for the selection of pigmented potatoes with better nutritional quality planting environment and the formulation of cultivation measures.


Assuntos
Solanum tuberosum , Temperatura , Solanum tuberosum/metabolismo , Antocianinas/metabolismo , Temperatura Baixa , Fotossíntese , Tubérculos/genética
5.
Angew Chem Int Ed Engl ; : e202410988, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283269

RESUMO

Circularly polarized luminescence (CPL) is widely applied in optical data storage, quantum computing and backlights in three-dimensional (3D) displays. Carbon dots (CDs) exhibit competitive optical properties, in addition to excellent resistance to photo- and chemical-bleaching after carbonization. Combining the superior optical performance with polarization peculiarities through hierarchical structure engineering is imperative for the development of CDs. Here, oriented assembly was driven by hydrophobic interactions of aromatic ligands, which participated in the surface-ligand post-modification process on ground-state chiral carbon core. Furthermore, the residual chiral amides on CDs formed multi-hydrogen bonds during gradual aggregation, causing the assembled materials to form asymmetric bending structure. Superficial ligands interfered with optical dynamics of exciton radiation transition and promoted the excited state of the assembled materials to achieve a circularly polarized signal. The linkage ligands successfully overcame the frequent phenomenon of aggregation-induced quenching and contributed further to the formation of self-supporting films by assembly and facilitated chiral optical expression. The full-color and white CPL were manipulated by simply regulating the functional groups on the ligands. Finally, based on the stable chiral powder phosphors, large chiral flexible films and multicolor chiral light-emitting diodes were constructed which provide feasible materials and technical support for flexible 3D displays.

6.
Chemistry ; 29(65): e202302383, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37681290

RESUMO

Carbon dots (CDs) smaller than 10 nm constitute a new type of fluorescent carbon-based nanomaterial. They have attracted much attention owing to their unique structures and excellent photoelectric properties. Primitive CDs usually comprise carbon and oxygen and are synthesized in one step from various natural products or synthetic organic compounds, usually via microwave or hydrothermal methods. However, the uniformity of surface functional groups often make CDs lack the diversity of active sites required for specific applications. Therefore, the functionalization of CDs by specific groups is a powerful strategy for improving their photophysical and photochemical properties. This paper reviews surface modification strategies to overcome these shortcomings. Functionalizing CDs using covalent or non-covalent modification can give them unique properties and broaden their applicability.

7.
J Biol Chem ; 288(34): 24429-40, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836893

RESUMO

GATA and Friend of GATA (FOG) form a transcriptional complex that plays a key role in cardiovascular development in both fish and mammals. In the present study we demonstrate that the basic helix-loop-helix transcription factor Atonal homolog 8 (Atoh8) is required for development of the heart in fish but not in mice. Genetic studies reveal that Atoh8 interacts specifically with Gata4 and Fog1 during development of the heart and swim bladder in the fish. Biochemical studies reveal that ATOH8, GATA4, and FOG2 associate in a single complex in vitro. In contrast to fish, ATOH8-deficient mice exhibit normal cardiac development and loss of ATOH8 does not alter cardiac development in Gata4(+/-) mice. This species difference in the role of ATOH8 is explained in part by LacZ and GFP reporter alleles that reveal restriction of Atoh8 expression to atrial but not ventricular myocardium in the mouse. Our findings identify ATOH8 as a novel regulator of GATA-FOG function that is required for cardiac development in the fish but not the mouse. Whether ATOH8 modulates GATA-FOG function at other sites or in more subtle ways in mammals is not yet known.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição GATA/metabolismo , Fator de Transcrição GATA4/metabolismo , Organogênese/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Sacos Aéreos/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição GATA/genética , Fator de Transcrição GATA4/genética , Átrios do Coração/embriologia , Ventrículos do Coração/embriologia , Camundongos , Camundongos Transgênicos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Miocárdio/metabolismo , Especificidade de Órgãos/fisiologia , Fatores de Transcrição/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
Diabetes ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39178104

RESUMO

Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus which is associated with visual loss and blindness worldwide. However, the effective treatments for both early- and late-stage DR remains lacking. A streptozotocin (STZ)-induced diabetic mice model and high glucose (HG)-treated Müller cell model were established. M1/M2 microglia polarization was assessed by immunofluorescence (IF) staining and flow cytometry. Expression of lncRNA OGRU, cytokines and other key molecules were detected by qRT-PCR or western blot. ELISA assay was employed to monitor cytokine secretion. Müller cell-derived exosomes were isolated and characterized by nanopartical tracking analysis (NTA), western blot and transmission electron microscopy (TEM), and exosome uptake assay was used to monitor the intercellular transport of exosomes. Associations among lncRNA-miRNA-mRNA networks were validated by RNA pull-down and RNA immunoprecipitation (RIP) and dual luciferase assays. Increased M1 polarization but decreased M2 polarization of retinal microglia were observed in DR mice. HG-treated Müller cell-derived exosomes transported OGRU into microglia and promoted microglia polarization toward M1 phenotype. Mechanistically, OGRU served as a competing endogenous RNA (ceRNA) for miR-320-3p, miR-221-3p and miR-574-5p to regulate AR, PFKFB3 and GLUT1 expression in microglia, respectively. Loss of miR-320-3p/miR-221-3p/miR-574-5p or reinforced AR/PFKFB3/GLUT1 abrogated OGRU silencing-mediated microglia polarization in vitro. In vivo studies further showed that OGRU/miR-320-3p/AR, OGRU/miR-221-3p/PFKFB3 and OGRU/miR-574-5p/GLUT1 axes regulated microglia polarization in DR mice. Collectively, Müller cells-derived exosomal OGRU regulated microglia polarization in DR via modulating OGRU/miR-320-3p/AR, OGRU/miR-221-3p/PFKFB3 and OGRU/miR-574-5p/GLUT1 axes.

9.
Adv Mater ; 36(27): e2401220, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38652510

RESUMO

The development of single-system materials that exhibit both multicolor room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) with tunable after glow colors and channels is challenging. In this study, four metal-free carbon dots (CDs) are developed through structural tailoring, and panchromatic high-brightness RTP is achieved via strong chemical encapsulation in urea. The maximum lifetime and quantum yield reaches 2141 ms and 56.55%, respectively. Moreover, CDs-IV@urea, prepared via coreshell interaction engineering, exhibits a dual afterglow of red RTP and green TADF. The degree of conjugation and functional groups of precursors affects the binding interactions of the nitrogen cladding on CDs, which in turn stabilizes triplet energy levels and affects the energy gap between S1 and T1 (ΔEST) to induce multicolor RTP. The enhanced wrapping interaction lowers the ΔEST, promoting reverse intersystem crossing, which leads to phosphorescence and TADF. This strong coreshell interaction fully stabilizes the triplet state, thus stabilizing the material in water, even in extreme environments such as strong acids and oxidants. These afterglow materials are tested in multicolor, time, and temperature multiencryption as well as in multicolor in vivo bioimaging. Hence, these materials have promising practical applications in information security as well as biomedical diagnosis and treatment.

10.
Front Plant Sci ; 14: 1101172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818873

RESUMO

Introduction: UltraViolet- Biological (UV-B) plays an important role in plant growth and the formation of nutrients, especially secondary metabolites. Methods: To investigate the phenotypic changes, physiological responses, and internal genes expression of potatoes under enhanced UV-B radiation, two Yunnan native pigmented potatoes varieties named "Huaxinyangyu" and "Jianchuanhong" were exposed to different UV-B doses during whole growth duration. Results: Pearson correlation analysis and principal component analysis showed that the agronomic characters (i.e. plant height, pitch, stem diameter, and root shoot ratio) of plants treated with low dose ultraviolet (T1) did not change significantly compared with the absence of ultraviolet radiation (CK), even unit yield increased slightly; Similarly, under low UV-B radiation, photosynthetic and physiological parameters (photosynthetic rate, stomatal conductance, respiration rate, and transpiration rate) of leaves were significantly increased. In addition, low-dose UV-B treatment promoted the synthesis of tuber nutrients (e.g. phenols, chlorogenic acids, flavonoids, vitamin C, anthocyanins) and increased the expression of structural genes for anthocyanin synthesis. The number of nutrients and gene expression in tubers raised by the "Huaxinyangyu" was the highest at 84 days, and "Jianchuanhong" was the highest at 72 days. However, the higher dose of UV-B radiation (T2) will cause greater damage to the pigmented potatoes plants, making the plants reduce the yield, and significantly reduce the tuber nutrients. Discussion: This study showed that proper ultraviolet radiation will not harm pigmented potatoes, but also improve their oxidative stress tolerance, increase the structure genes expression of anthocyanins and continuously synthesize beneficial substances to improve the yield and quality of potato tubers.

11.
Front Plant Sci ; 14: 1030236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844045

RESUMO

Introduction: Sweet potato is an important staple food crop in the world and contains abundant secondary metabolites in its underground tuberous roots. The large accumulation of several categories of secondary metabolites result in colorful pigmentation of the roots. Anthocyanin, is a typical flavonoid compound present in purple sweet potatoes and it contributes to the antioxidant activity. Methods: In this study, we developed joint omics research via by combing the transcriptomic and metabolomic analysis to explore the molecular mechanisms underlying the anthocyanin biosynthesis in purple sweet potato. Four experimental materials with different pigmentation phenotypes, 1143-1 (white root flesh), HS (orange root flesh), Dianziganshu No.88 (DZ88, purple root flesh), and Dianziganshu No.54 (DZ54, dark purple root flesh) were comparably studied. Results and discussion: We identified 38 differentially accumulated pigment metabolites and 1214 differentially expressed genes from a total of 418 metabolites and 50893 genes detected. There were 14 kinds of anthocyanin detected in DZ88 and DZ54, with glycosylated cyanidin and peonidin as the major components. The significantly enhanced expression levels of multiple structural genes involved in the central anthocyanin metabolic network, such as chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase/leucocyanidin oxygenase (ANS), and glutathione S-transferase (GST) were manifested to be the primary reason why the purple sweet potatoes had a much higher accumulation of anthocyanin. Moreover, the competition or redistribution of the intermediate substrates (i.e. dihydrokaempferol and dihydroquercetin) between the downstream production of anthocyanin products and the flavonoid derivatization (i.e. quercetin and kaempferol) under the regulation of the flavonol synthesis (FLS) gene, might play a crucial role in the metabolite flux repartitioning, which further led to the discrepant pigmentary performances in the purple and non-purple materials. Furthermore, the substantial production of chlorogenic acid, another prominent high-value antioxidant, in DZ88 and DZ54 seemed to be an interrelated but independent pathway differentiated from the anthocyanin biosynthesis. Collectively, these data from the transcriptomic and metabolomic analysis of four kinds of sweet potatoes provide insight to understand the molecular mechanisms of the coloring mechanism in purple sweet potatoes.

12.
EClinicalMedicine ; 66: 102315, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38024475

RESUMO

Background: Immunotherapy has revolutionized the treatment of cancer. However, microsatellite stable (MSS) metastatic colorectal cancer (mCRC) shows a low response to PD-1 inhibitors. Antiangiogenic therapy can enhance anti-PD-1 efficacy, but it still cannot meet clinical needs. Increasing evidence supported a close relationship between gut microbiome and anti-PD-1 efficacy. This study aimed to explore the efficacy and safety of the combination of fecal microbiota transplantation (FMT) and tislelizumab and fruquintinib in refractory MSS mCRC. Methods: In the phase II trial, MSS mCRC patients were administered FMT plus tislelizumab and fruquintinib as a third-line or above treatment. The primary endpoint was progression-free survival (PFS). Secondary endpoints were overall survival (OS), objective response rate (ORR), disease control rate (DCR), duration of response (DoR), clinical benefit rate (CBR), safety and quality of life. Feces and peripheral blood were collected for exploratory biomarker analysis. This study is registered with Chictr.org.cn, identifier ChiCTR2100046768. Findings: From May 10, 2021 to January 17, 2022, 20 patients were enrolled. Median follow-up was 13.7 months. Median PFS was 9.6 months (95% CI 4.1-15.1). Median OS was 13.7 months (95% CI 9.3-17.7). Median DoR was 8.1 months (95% CI 1.7-10.6). ORR was 20% (95% CI 5.7-43.7). DCR was 95% (95% CI 75.1-99.9). CBR was 60% (95% CI 36.1-80.9). Nineteen patients (95%) experienced at least one treatment-related adverse event (TRAE). Six patients (30%) had grade 3-4 TRAEs, with the most common being albuminuria (10%), urine occult blood (10%), fecal occult blood (10%), hypertension (5%), hyperglycemia (5%), liver dysfunction (5%), hand-foot skin reaction (5%), and hypothyroidism (5%). No treatment-related deaths occurred. Responders had a high-abundance of Proteobacteria and Lachnospiraceae family and a low-abundance of Actinobacteriota and Bifidobacterium. The treatment did not change the structure of peripheral blood TCR repertoire. However, the expanded TCRs exhibited the characteristics of antigen-driven responses in responders. Interpretation: FMT plus tislelizumab and fruquintinib as third-line or above treatment showed improved survival and manageable safety in refractory MSS mCRC, suggesting a valuable new treatment option for this patient population. Funding: This study was supported by the National Natural Science Foundation of China (82102954 to Wensi Zhao) and the Special Project of Central Government for Local Science and Technology Development of Hubei Province (ZYYD2020000169 to Yongshun Chen).

13.
Nutr Cancer ; 63(7): 1064-73, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21864060

RESUMO

Theasinensin A is one of the oolong tea theasinensins, which differ from green tea catechins and black tea theaflavins. In a previous study, we found that theasinesin A had a potential effect on antiinflammation since theasinensin A suppressed LPS-induced COX2 and PGE(2) production. To clarify the molecular mechanisms, we investigated the gene expression profiling in macrophage-like cells treated with theasinensin A through a genome-wide DNA microarray in the present study. Among 22,050 oligonucleotides, the expression levels of 406 genes were increased by ≥3-fold in LPS-activated RAW264 cells, 259 gene signals of which were attenuated by theasinensin A treatment (≥2-fold). Expression levels of 717 genes were decreased by ≥3-fold in LPS-activated cells, of which 471 gene signals were restored by theasinensin A treatment (≥2-fold). These genes were further categorized as "defense, inflammatory response, cytokines activities, and receptor activities," and some of them were confirmed by real-time polymerase chain reaction. Furthermore, pathways analysis revealed that theasinensin A regulated the relevant expression networks of chemokines, interleukins, and interferons to exert its antiinflammatory effects.


Assuntos
Benzopiranos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Fenóis/farmacologia , Chá/química , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Perfilação da Expressão Gênica , Interferons/genética , Interferons/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Lipopolissacarídeos/efeitos adversos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
14.
Acta Neuropathol ; 119(1): 111-22, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19649643

RESUMO

Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is characterized by progressive decline in behavior, executive function, and language. Progranulin (GRN) gene mutations are pathogenic for FTLD-TDP, and GRN transcript haploinsufficiency is the proposed disease mechanism. However, the evidence for this hypothesis comes mainly from blood-derived cells; we measured progranulin expression in brain. We characterized mRNA and protein levels of progranulin from four brain regions (frontal cortex, temporal cortex, occipital cortex, and cerebellum) in FTLD-TDP patients with and without GRN mutations, as well as neurologically normal individuals. Moreover, we performed immunohistochemistry to evaluate the degree of TDP-43 pathology and microglial infiltration present in these groups. In most brain regions, patients with GRN mutations showed mRNA levels comparable to normal controls and to FTLD-TDP without GRN mutations. However, GRN transcript levels in a brain region severely affected by disease (frontal cortex) were increased in mutation-bearing patients. When compared with normal individuals, GRN mutation-bearing cases had a significant reduction in the amount of progranulin protein in the cerebellum and occipital cortex, but not in the frontal and temporal cortices. In GRN mutant cases, GRN mRNA originated from the normal allele, and moderate microglial infiltration was observed. In conclusion, GRN mutation carriers have increased levels of mRNA transcript from the normal allele in brain, and proliferation of microglia likely increases progranulin levels in affected regions of the FTLD-TDP brain, and whether or not these findings underlie the accumulation of TDP-43 pathology in FTLD-TDP linked to GRN mutations remains to be determined.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Alelos , Cerebelo/metabolismo , Ensaio de Imunoadsorção Enzimática , Lobo Frontal/metabolismo , Degeneração Lobar Frontotemporal/sangue , Degeneração Lobar Frontotemporal/genética , Variação Genética , Humanos , Immunoblotting , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/genética , Microglia/metabolismo , Mutação , Lobo Occipital/metabolismo , Progranulinas , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Lobo Temporal/metabolismo
15.
Eur J Neurosci ; 29(1): 42-54, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19120439

RESUMO

Calcyon is a single transmembrane endocytic protein that regulates clathrin assembly and clathrin-mediated endocytosis in the brain. Ultrastructural studies indicate that calcyon localizes to spines, but whether it regulates glutamate neurotransmission is not known. Here, we show that deletion of the calcyon gene in mice inhibits agonist-stimulated endocytosis of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), without altering basal surface levels of the GluR1 or GluR2 subunits. Whole-cell patch-clamp studies of hippocampal neurons in culture and CA1 synapses in slices revealed that knockout (KO) of calcyon abolishes long-term synaptic depression (LTD), whereas mini-analysis in slices indicated basal transmission in the hippocampus is unaffected by the deletion. Further, transfection of green fluorescent protein-tagged calcyon rescued the ability of KO cultures to undergo LTD. In contrast, intracellular dialysis of a fusion protein containing the clathrin light-chain-binding domain of calcyon blocked the induction of LTD in wild-type hippocampal slices. Taken together, the present studies involving biochemical, immunological and electrophysiological analyses raise the possibility that calcyon plays a specialized role in regulating activity-dependent removal of synaptic AMPARs.


Assuntos
Endocitose/fisiologia , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Proteínas de Membrana/genética , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Clatrina/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Proteínas de Fluorescência Verde , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Receptores de AMPA/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
16.
Sci Rep ; 8(1): 10865, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022028

RESUMO

In this study, it is aimed to investigate the antioxidant mechanism of new extracts from potatoes. Four pigments, namely, Petunin, Paeonin, Malvidin and Pelargonidin, were extracted from potatoes by high performance liquid chromatography (HPLC). Our results showed that the cellular morphology and cell viability were significantly altered in gastric mucosal epithelial cells (GES-1) treated with different hydrogen peroxide (H2O2) concentrations over time (P < 0.05). Paeonin presented the strongest anti-oxidative effects on H2O2-treated cells, in both a dose- and time-dependent manner, determined by ARE-luciferase activity and HO-1 mRNA expression. After pre-treatment with Paeonin in H2O2-exposed cells, Keap1, Nrf2, HO-1 and NQO1 protein expressions were remarkably up-regulated. Furthermore, immunostaining of Nrf2 expression was obviously elevated in the H2O2 + Paeonin group over time. The GSH content in the H2O2 + Paeonin group was notably lower than that in the H2O2 + Paeonin + GSK690693 group. Paeonin promoted cell cycle with augmented Cyclin D1 and p27 protein expressions. Moreover, Paeonin suppressed apoptosis with increased Bcl2, total Caspase3 and total Caspase8 protein expressions and decreased Bax, p-Caspase3 and p-Caspase8 protein expression in H2O2-treated cells. These results suggested that Paeonin might exert an anti-oxidative role by activating Nrf2 signaling pathway with the changes of cell cycle and apoptosis.


Assuntos
Antocianinas/farmacologia , Antioxidantes/farmacologia , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Solanum tuberosum/química , Estômago/efeitos dos fármacos , Elementos de Resposta Antioxidante , Células Cultivadas , Citoproteção , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Técnicas In Vitro , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxidantes/efeitos adversos , Oxirredução , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estômago/patologia
17.
Zhonghua Zhong Liu Za Zhi ; 27(4): 226-8, 2005 Apr.
Artigo em Zh | MEDLINE | ID: mdl-15949423

RESUMO

OBJECTIVE: To investigate the relation between angiogensis, fibrinolysis and invasion/metastasis in breast cancer. METHODS: The expression of urokinase-type plasminogen activator (uPA) and microvascular density (MVD) was immunohistochemically studied in 110 patients with primary breast cancer. RESULTS: High uPA expression was found in 59 patients (53.6%), and weak expression in 51 patients (46.4%). Strong MVD expression was found in 53 patients (48.2%), and weak expression in 57 patients (51.8%). The correlation between uPA expression and tumor size, lymph node status, TNM stage was statistically significant. Expression of MVD was also significantly associated with tumor size and TNM stage. Neither age related to GDDP, menopausal status nor PR ER status was significantly with uPA and MVD expression. Patients with strong expression of uPA and/or MVD had a significantly shorter relapse-free survival than those with weak expression of uPA and/or MVD. Especially, patients with strong expression of both uPA and MVD were likely to develop recurrence and metastasis. Multivariate analysis showed that uPA and MVD were two independent prognostic factors affecting the relapse-free survival. CONCLUSION: Angiogensis and fibrinolysis were closely associated with invasion and metastasis of breast cancer. uPA and MVD may be two strong and independent biologic markers in predicting postoperative relapse and metastasis of breast cancer.


Assuntos
Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/patologia , Fibrinólise , Neovascularização Patológica , Adulto , Idoso , Neoplasias da Mama/sangue , Feminino , Fibrinólise/fisiologia , Humanos , Metástase Linfática , Pessoa de Meia-Idade , Invasividade Neoplásica
18.
Ann Med ; 47(6): 512-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26416502

RESUMO

BACKGROUND: Studies about work stress and the risk of coronary heart disease (CHD) have yielded inconsistent results. This meta-analysis aimed to investigate the association between job strain and the risk of CHD. METHODS: We searched PubMed and Embase databases for studies reporting data on job strain and the risk of CHD. Studies were included if they reported multiple-adjusted relative risk (RR) with 95% confidence interval (CI) with respect to CHD from job strain. RESULTS: Fourteen prospective cohort studies comprising 232,767 participants were included. The risk of CHD was increased in high-strain (RR 1.26; 95% CI 1.12-1.41) and passive jobs (RR 1.14; 95% CI 1.02-1.29) but not in active jobs (RR 1.09; 95% CI 0.97-1.22), when compared with low-strain group. The increased risk of CHD in high-strain and passive jobs was mainly driven by studies with a follow-up duration of ≥ 10 years. Neither the low-control (RR 1.06; 95% CI 0.93-1.19) nor high-demand (RR 1.13; 95% CI 0.97-1.32) dimension was independently associated with the risk of CHD. CONCLUSIONS: Individuals with high-strain and passive jobs were more likely to experience a CHD event. Intervention programs incorporating individual and organizational levels are crucial for reducing job strain and the risk of CHD.


Assuntos
Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/psicologia , Estresse Psicológico/epidemiologia , Estresse Psicológico/psicologia , Carga de Trabalho/psicologia , Adolescente , Adulto , Idoso , Estudos de Coortes , Doença da Artéria Coronariana/etiologia , Emprego/psicologia , Feminino , Humanos , Satisfação no Emprego , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Estresse Psicológico/diagnóstico , Adulto Jovem
19.
Zhonghua Yu Fang Yi Xue Za Zhi ; 36(4): 243-6, 2002 Jul.
Artigo em Zh | MEDLINE | ID: mdl-12411204

RESUMO

OBJECTIVE: Using the carbon tetrachloride liver cirrhosis rat model, the protective effect of the green tea extractive (GTE) on the liver cirrhosis was studied. METHODS: Male SD rats were randomly divided into three groups: normal group, GTE group and cirrhosis group. The GTE group and the cirrhosis group were injected subcutanuously 2 times/wk over 9 weeks with 40% CCl(4). In the second and the ninth week, the rats were sacrificed to measure MDA and hydroxyproline concentrations and TGF-beta(1) mRNA expression in liver tissue, as well as to conduct histological examination on various organs. RESULTS: Compared with the cirrhosis group, the MDA and the hydroxyproline concentrations in the GTE group were significantly reduced (P < 0.05). The liver necrosis and cirrhosis were extenuated in the GTE group by means of histologic examination. The expression of the TGF-beta(1) mRNA was reduced significantly in the GTE group. CONCLUSION: Dietary supplementation of GTE can protect against CCl(4)-induced liver damage and cirrhosis in rats.


Assuntos
Tetracloreto de Carbono/toxicidade , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Chá/química , Animais , Doença Crônica , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Masculino , Malondialdeído/metabolismo , Extratos Vegetais/química , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta1
20.
Neuro Oncol ; 16(2): 191-203, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24305710

RESUMO

Background Nuclear factor IA (NFIA), a transcription factor and essential regulator in embryonic glial development, is highly expressed in human glioblastoma (GBM) compared with normal brain, but its contribution to GBM and cancer pathogenesis is unknown. Here we demonstrate a novel role for NFIA in promoting growth and migration of GBM and establish the molecular mechanisms mediating these functions. Methods To determine the role of NFIA in glioma, we examined the effects of NFIA in growth, proliferation, apoptosis, and migration. We used gain-of-function (overexpression) and loss-of-function (shRNA knockdown) of NFIA in primary patient-derived GBM cells and established glioma cell lines in culture and in intracranial xenografts in mouse brains. Results Knockdown of native NFIA blocked tumor growth and induced cell death and apoptosis. Complementing this, NFIA overexpression accelerated growth, proliferation, and migration of GBM in cell culture and in mouse brains. These NFIA tumor-promoting effects were mediated via transcriptional repression of p53, p21, and plasminogen activator inhibitor 1 (PAI1) through specific NFIA-recognition sequences in their promoters. Importantly, the effects of NFIA on proliferation and apoptosis were independent of TP53 mutation status, a finding especially relevant for GBM, in which TP53 is frequently mutated. Conclusion NFIA is a modulator of GBM growth and migration, and functions by distinct regulation of critical oncogenic pathways that govern the malignant behavior of GBM.


Assuntos
Neoplasias Encefálicas/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Fatores de Transcrição NFI/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ciclo Celular , Movimento Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Nus , Fatores de Transcrição NFI/antagonistas & inibidores , Fatores de Transcrição NFI/genética , Inibidor 1 de Ativador de Plasminogênio/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA