RESUMO
Mycobacterium abscessus causes severe disease in patients with cystic fibrosis. Little is known in M. abscessus about the roles of small regulatory RNAs (sRNA) in gene regulation. We show that the sRNA B11 controls gene expression and virulence-associated phenotypes in this pathogen. B11 deletion from the smooth strain ATCC_19977 produced a rough strain, increased pro-inflammatory signaling and virulence in multiple infection models, and increased resistance to antibiotics. Examination of clinical isolate cohorts identified isolates with B11 mutations or reduced expression. We used RNAseq and proteomics to investigate the effects of B11 on gene expression and test the impact of mutations found in clinical isolates. Over 200 genes were differentially expressed in the deletion mutant. Strains with the clinical B11 mutations showed expression trends similar to the deletion mutant, suggesting partial loss of function. Among genes upregulated in the B11 mutant, there was a strong enrichment for genes with B11-complementary sequences in their predicted ribosome binding sites (RBS), consistent with B11 functioning as a negative regulator that represses translation via base-pairing to RBSs. Comparing the proteomes similarly revealed that upregulated proteins were strongly enriched for B11-complementary sequences. Intriguingly, genes upregulated in the absence of B11 included components of the ESX-4 secretion system, critical for M. abscessus virulence. Many of these genes had B11-complementary sequences at their RBSs, which we show is sufficient to mediate repression by B11 through direct binding. Altogether, our data show that B11 acts as a direct negative regulator and mediates (likely indirect) positive regulation with pleiotropic effects on gene expression and clinically important phenotypes in M. abscessus. The presence of hypomorphic B11 mutations in clinical strains is consistent with the idea that lower B11 activity may be advantageous for M. abscessus in some clinical contexts. This is the first report on an sRNA role in M. abscessus.
Assuntos
Mycobacterium abscessus , Pequeno RNA não Traduzido , Mycobacterium abscessus/genética , Virulência/genética , Antibacterianos , Pequeno RNA não Traduzido/genéticaRESUMO
In view of the urgent need for new antibiotics to treat human infections caused by multidrug-resistant pathogens, drug repurposing is gaining strength due to the relatively low research costs and shorter clinical trials. Such is the case of artemisinin, an antimalarial drug that has recently been shown to display activity against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To gain insight into how Mtb is affected by artemisinin, we used RNAseq to assess the impact of artemisinin on gene expression profiles, revealing the induction of several efflux pumps and the KstR2 regulon. To anticipate the artemisinin resistance-conferring mutations that could arise in clinical Mtb strains, we performed an in vitro evolution experiment in the presence of lethal concentrations of artemisinin. We obtained artemisinin-resistant isolates displaying different growth kinetics and drug phenotypes, suggesting that resistance evolved through different pathways. Whole-genome sequencing of nine isolates revealed alterations in the glpK and glpQ1 genes, both involved in glycerol metabolism, in seven and one strains, respectively. We then constructed a glpK mutant and found that loss of glpK increases artemisinin resistance only when glycerol is present as a major carbon source. Our results suggest that mutations in glycerol catabolism genes could be selected during the evolution of resistance to artemisinin when glycerol is available as a carbon source. These results add to recent findings of mutations and phase variants that reduce drug efficacy in carbon-source-dependent ways.
Assuntos
Antituberculosos , Artemisininas , Glicerol , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Artemisininas/farmacologia , Antituberculosos/farmacologia , Glicerol/metabolismo , Carbono/metabolismo , Mutação , Farmacorresistência Bacteriana/genética , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequenciamento Completo do GenomaRESUMO
Despite the existence of well-characterized, canonical mutations that confer high-level drug resistance to Mycobacterium tuberculosis (Mtb), there is evidence that drug resistance mechanisms are more complex than simple acquisition of such mutations. Recent studies have shown that Mtb can acquire non-canonical resistance-associated mutations that confer survival advantages in the presence of certain drugs, likely acting as stepping-stones for acquisition of high-level resistance. Rv2752c/rnj, encoding RNase J, is disproportionately mutated in drug-resistant clinical Mtb isolates. Here we show that deletion of rnj confers increased tolerance to lethal concentrations of several drugs. RNAseq revealed that RNase J affects expression of a subset of genes enriched for PE/PPE genes and stable RNAs and is key for proper 23S rRNA maturation. Gene expression differences implicated two sRNAs and ppe50-ppe51 as important contributors to the drug tolerance phenotype. In addition, we found that in the absence of RNase J, many short RNA fragments accumulate because they are degraded at slower rates. We show that the accumulated transcript fragments are targets of RNase J and are characterized by strong secondary structure and high G+C content, indicating that RNase J has a rate-limiting role in degradation of highly structured RNAs. Taken together, our results demonstrate that RNase J indirectly affects drug tolerance, as well as reveal the endogenous roles of RNase J in mycobacterial RNA metabolism.
Assuntos
Mycobacterium tuberculosis , Ribonucleases , Tolerância a Medicamentos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: African wormwood (Artemisia afra Jacq. ex Willd.) has been used traditionally in southern Africa to treat illnesses causing fever and was recently shown to possess anti-tuberculosis activity. As tuberculosis is an endemic cause of fever in southern Africa, this suggests that the anti-tubercular activity of A. afra may have contributed to its traditional medicinal use. AIM OF THE STUDY: Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is a deadly and debilitating disease globally affecting millions annually. Emerging drug-resistant Mtb strains endanger the efficacy of the current therapies employed to treat tuberculosis; therefore, there is an urgent need to develop novel drugs to combat this disease. Given the reported activity of A. afra against Mtb, we sought to determine the mechanisms by which A. afra inhibits and kills this bacterium. MATERIALS AND METHODS: We used transcriptomics to investigate the impact of Artemisia spp. extracts on Mtb physiology. We then used chromatographic fractionation and biochemometric analyses to identify a bioactive fractions of A. afra extracts and identify an active compound. RESULTS: Transcriptomic analysis revealed that A. afra exerts different effects on Mtb compared to A. annua or artemisinin, suggesting that A. afra possesses other phytochemicals with unique modes of action. A biochemometric study of A. afra resulted in the isolation of an O-methylflavone (1), 5-hydroxy-7-methoxy-2-(4-methoxyphenyl)chromen-4-one, which displayed considerable activity against Mtb strain mc26230 in both log phase growth and metabolically downshifted hypoxic cultures. CONCLUSIONS: The present study demonstrated that an O-methylflavone constituent of Artemisia afra explains part of the activity of this plant against Mtb. This result contributes to a mechanistic understanding of the reported anti-tubercular activity of A. afra and highlights the need for further study of this traditional medicinal plant and its active compounds.
Assuntos
Antituberculosos , Artemisia , Flavonas , Mycobacterium tuberculosis , Extratos Vegetais , Artemisia/química , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonas/farmacologia , Flavonas/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/isolamento & purificaçãoRESUMO
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is a deadly and debilitating disease globally affecting millions annually. Emerging drug-resistant Mtb strains endanger the efficacy of the current combination therapies employed to treat tuberculosis; therefore, there is an urgent need to develop novel drugs to combat this disease. Artemisia afra is used traditionally in southern Africa to treat malaria and recently has shown anti tuberculosis activity. This genus synthesizes a prodigious number of phytochemicals, many of which have demonstrated human health effects. Transcriptomic analysis revealed that A. afra exerts different effects on Mtb compared to A. annua or the well-known antimalarial artemisinin, suggesting other phytochemicals present in A. afra with unique modes of action. A biochemometric study of A. afra resulted in the isolation of a methoxylated flavone (1), which displayed considerable activity against Mtb strain mc26230. Compound 1 had an MIC of 312.5 µg/mL and yielded no viable colonies after 6 days of treatment. In addition, 1 was effective in killing hypoxic Mtb cultures, with no viable cultures after 2 days of treatment. This suggested that A. afra is a source of potentially powerful anti-Mtb phytochemicals with novel mechanisms of action.