Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37571506

RESUMO

Ship trajectory classification is of great significance for shipping analysis and marine security governance. However, in order to cover up their illegal fishing or espionage activities, some illicit ships will forge the ship type information in the Automatic Identification System (AIS), and this label noise will significantly impact the algorithm's classification accuracy. Sample selection is a common and effective approach in the field of learning from noisy labels. However, most of the existing methods based on sample selection need to determine the noise rate of the data through prior means. To address these issues, we propose a noise rate adaptive learning mechanism that operates without prior conditions. This mechanism is integrated with the robust training paradigm JoCoR (joint training with co-regularization), giving rise to a noise rate adaptive learning robust training paradigm called A-JoCoR. Experimental results on real-world trajectories provided by the Danish Maritime Authority verified the effectiveness of A-JoCoR. It not only realizes the adaptive learning of the data noise rate during the training process, but also significantly improves the classification performance compared with the original method.

2.
Sensors (Basel) ; 20(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096671

RESUMO

Network security is a crucial challenge facing Internet-of-Things (IoT) systems worldwide, which leads to serious safety alarms and great economic loss. This paper studies the problem of malicious interdicting network exploitation of IoT systems that are modeled as a bi-layer logical-physical network. In this problem, a virtual attack takes place at the logical layer (the layer of Things), while the physical layer (the layer of Internet) provides concrete support for the attack. In the interdiction problem, the attacker attempts to access a target node on the logical layer with minimal communication cost, but the defender can strategically interdict some key edges on the physical layer given a certain budget of interdiction resources. This setting generalizes the classic single-layer shortest-path network interdiction problem, but brings in nonlinear objective functions, which are notoriously challenging to optimize. We reformulate the model and apply Benders decomposition process to solve this problem. A layer-mapping module is introduced to improve the decomposition algorithm and a random-search process is proposed to accelerate the convergence. Extensive numerical experiments demonstrate the computational efficiency of our methods.

3.
Entropy (Basel) ; 22(8)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33286663

RESUMO

Stealth malware is a representative tool of advanced persistent threat (APT) attacks, which poses an increased threat to cyber-physical systems (CPS) today. Due to the use of stealthy and evasive techniques, stealth malwares usually render conventional heavy-weight countermeasures inapplicable. Light-weight countermeasures, on the other hand, can help retard the spread of stealth malwares, but the ensuing side effects might violate the primary safety requirement of CPS. Hence, defenders need to find a balance between the gain and loss of deploying light-weight countermeasures, which normally is a challenging task. To address this challenge, we model the persistent anti-malware process as a shortest-path tree interdiction (SPTI) Stackelberg game with both static version (SSPTI) and multi-stage dynamic version (DSPTI), and safety requirements of CPS are introduced as constraints in the defender's decision model. The attacker aims to stealthily penetrate the CPS at the lowest cost (e.g., time, effort) by selecting optimal network links to spread, while the defender aims to retard the malware epidemic as much as possible. Both games are modeled as bi-level integer programs and proved to be NP-hard. We then develop a Benders decomposition algorithm to achieve the Stackelberg equilibrium of SSPTI, and design a Model Predictive Control strategy to solve DSPTI approximately by sequentially solving an 1+δ approximation of SSPTI. Extensive experiments have been conducted by comparing proposed algorithms and strategies with existing ones on both static and dynamic performance metrics. The evaluation results demonstrate the efficiency of proposed algorithms and strategies on both simulated and real-case-based CPS networks. Furthermore, the proposed dynamic defense framework shows its advantage of achieving a balance between fail-secure ability and fail-safe ability while retarding the stealth malware propagation in CPS.

4.
ACS Appl Mater Interfaces ; 8(49): 33697-33703, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960375

RESUMO

The exploitation of highly efficiency and low-cost electrocatalysts toward oxygen evolution reaction (OER) is a meaningful route in renewable energy technologies including solar fuel and water splitting. Herein, NiFe-layered double hydroxide (NiFe-LDH) hollow microsphere (HMS) was designed and synthesized via a one-step in situ growth method by using SiO2 as a sacrificial template. Benefiting from the unique architecture, NiFe-LDH HMS shows highly efficient OER electrocatalytic activity with a preferable current density (71.69 mA cm-2 at η = 300 mV) and a small onset overpotential (239 mV at 10 mA cm-2), which outperforms the 20 wt % commercial Ir/C catalyst. Moreover, it exhibits a remarkably low Tafel slope (53 mV dec-1) as well as a satisfactory long-time stability. Electrochemical studies reveal that this hierarchical structure facilitates a full exposure of active sites and facile ion transport kinetics, accounting for the excellent performance. It is expected that the NiFe-LDH microsphere material can serve as a promising non-noble-metal-based electrocatalyst toward water oxidation reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA