Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762543

RESUMO

Basic leucine zipper (bZIP) transcription factors play significant roles in plants' growth and development processes, as well as in response to biological and abiotic stresses. Hypericum perforatum is one of the world's top three best-selling herbal medicines, mainly used to treat depression. However, there has been no systematic identification or functional analysis of the bZIP gene family in H. perforatum. In this study, 79 HpbZIP genes were identified. Based on phylogenetic analysis, the HpbZIP gene family was divided into ten groups, designated A-I and S. The physicochemical properties, gene structures, protein conserved motifs, and Gene Ontology enrichments of all HpbZIPs were systematically analyzed. The expression patterns of all genes in different tissues of H. perforatum (i.e., root, stem, leaf, and flower) were analyzed by qRT-PCR, revealing the different expression patterns of HpbZIP under abiotic stresses. The HpbZIP69 protein is localized in the nucleus. According to the results of the yeast one-hybrid (Y1H) assays, HpbZIP69 can bind to the HpASMT2 (N-acetylserotonin O-methyltransferase) gene promoter (G-box cis-element) to activate its activity. Overexpressing HpbZIP69 in Arabidopsis wild-type lines enhanced their tolerance to drought. The MDA and H2O2 contents were significantly decreased, and the activity of superoxide dismutase (SOD) was considerably increased under the drought stress. These results may aid in additional functional studies of HpbZIP transcription factors, and in cultivating drought-resistant medicinal plants.

2.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613796

RESUMO

WRKY, named for its special heptapeptide conserved sequence WRKYGOK, is one of the largest transcription factor families in plants and is widely involved in plant responses to biotic, abiotic, and hormonal stresses, especially the important regulatory function in response to drought stress. However, there is no complete comprehensive analysis of this family in H. perforatum, which is one of the most extensively studied plants and is probably the best-known herbal medicine on the market today, serving as an antidepressant, neuroprotective, an antineuralgic, and an antiviral. Here, we identified 86 HpWRKY genes according to the whole genome database of H. perforatum, and classified them into three groups through phylogenetic analysis. Gene structure, conserved domain, motif, cis-elements, gene ontology, and expression profiling were performed. Furthermore, it was found that HpWRKY85, a homologous gene of AtWRKY75, showed obvious responses to drought treatment. Subcellular localization analysis indicated that this protein was localized in the nucleus by the Arabidopsis protoplasts transient transfection. Meanwhile, HpWRKY85-overexpressing Arabidopsis plants showed a stronger ability of root growth and scavenging endogenous reactive oxygen species. The results provide a reference for further understanding the role of HpWRKY85 in the molecular mechanism of drought resistance of H. perforatum.


Assuntos
Hypericum , Arabidopsis/genética , Arabidopsis/metabolismo , Resistência à Seca , Regulação da Expressão Gênica de Plantas , Hypericum/genética , Hypericum/fisiologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Família Multigênica
3.
Front Neurol ; 13: 952405, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36062014

RESUMO

Objective: To use structural magnetic resonance imaging (3D-MRI) to evaluate the abnormal development of the cerebral cortex in infants with global developmental delay (GDD). Methods: The GDD group includes 67 infants aged between 112 and 699 days with global developmental delay and who underwent T1-weighted MRI scans in Shanxi Children's Hospital from December 2019 to March 2022. The healthy control (HC) group includes 135 normal developing infants aged between 88 and 725 days in Shanxi Children's Hospital from September 2020 to August 2021. Whole-brain T1-weighted MRI scans were carried out with a 3.0-T magnetic resonance scanner, which was later processed using InfantSurfer to perform MR image processing and cortical surface reconstruction. Two morphological features of the cortical surface of the 68 brain regions were computed, i.e., the cortical thickness (CT) and cortical surface area (SA), and compared between the GDD and HC groups. Results: With regard to the CT, the HC group showed a rapid decrease at first and then a slow increase after birth, and the CT of the GDD group decreased slowly and then became relatively stable. The GDD group showed bilaterally higher hemispherical average CT than those in the HC group. In detail, for the left hemisphere, except in the entorhinal and temporal poles in which the average CT values of the two brain regions were lower than those of the HC group, the CT of the 26 brain regions in the GDD group was higher than those of the HC group (p < 0.05). For the right hemisphere, the CT of the entorhinal in the GDD group was lower than that in the HC group. Otherwise, the CT of the remaining 28 brain regions was higher than those in the HC group (p < 0.05). With regard to the SA, both groups showed a rapid increase after birth till 23 months and remained quite stable afterward. The GDD group shows lower SA bilaterally than that in the HC group. In detail, SA in the GDD group was lower in most cortical regions of both hemispheres than in the HC group (p < 0.05), except for the right temporal pole and entorhinal. When testing for brain asymmetry, we found that the HC group showed obvious asymmetry of CT and SA, while only a few cortical regions in the GDD group showed asymmetry.

4.
J Int Med Res ; 49(5): 3000605211016274, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34034539

RESUMO

OBJECTIVE: Prognostic indicators in acute coronary syndrome (ACS) would aid in decision-making and identifying high-risk patients. The systemic immune-inflammation index (SII) has good prognostic value in many diseases; however, its use has not been reported for ACS. We aimed to determine the associations between the SII and outcomes in patients with ACS, with adjustment for confounders. METHODS: In this retrospective cohort study, we used the MIMIC-III (Multiparameter Intelligent Monitoring in Intensive Care) database and the eICU Collaborative Research Database. The primary outcome was 30-day mortality. Cox regression analysis was performed to determine the relationship between the SII and patient outcomes, and we conducted subgroup analysis and smooth curve fitting. RESULTS: We identified 4699 patients with ACS: 1741 women and 2949 men, mean age 82.8±29.7 years, and mean SII 72.58±12.9. For 30-day all-cause mortality, the unadjusted hazard ratio (HR) (95% confidence interval [CI]) of SII <69.4 and SII >88.8 were 1.25 (1.04, 1.50) and 1.38 (1.15, 1.65), respectively. With SII >88.8, this association remained significant after adjustment for numerous potential confounders: HR 1.27 (1.06, 1.52). A similar relationship was observed for 90-day and 1-year all-cause mortality. CONCLUSIONS: SII is a promising prognostic indicator for unselected patients with ACS. This finding needs to be confirmed in prospective studies.


Assuntos
Síndrome Coronariana Aguda , Síndrome Coronariana Aguda/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Inflamação/diagnóstico , Masculino , Pessoa de Meia-Idade , Neutrófilos , Estudos Prospectivos , Estudos Retrospectivos
5.
Environ Sci Pollut Res Int ; 28(48): 69301-69313, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34296409

RESUMO

The heterogeneous photo-Fenton-like process is emerging as a promising treatment of antibiotics-containing wastewater. The preparation of new efficient and stable catalysts is one of the research fields. A composite catalyst, prussian blue (PB) modified CeO2 was prepared, characterized, and applied for photo-Fenton oxidation of norfloxacin (NOR) in this study. It was found that chemical doping of PB leaded to more oxygen vacancies and increased the surface area of CeO2 obviously. PB/CeO2 with more Ce3+ facilitated electron transfer between Fe3+/Fe2+ with Ce3+/Ce4+. PB could also improve the separation rate of photoexcited electron-hole pairs in CeO2 nanostructures. When the doping ratio of PB and CeO2 was 10%, PB/CeO2 show the highest catalytic degradation ability and 88.93% of NOR could be degraded within 30 min. PB/CeO2 composite showed well reactivity at the wide pH value range of 3-8. The reusable experiments and low iron dissolution with less than 1 mg/L indicated that PB/CeO2 could be employed as an efficient heterogeneous photo-Fenton-like catalyst in organic contaminants degradation.


Assuntos
Norfloxacino , Água , Catálise , Ferrocianetos , Peróxido de Hidrogênio , Oxirredução
6.
Front Plant Sci ; 12: 781717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950170

RESUMO

Hypericum perforatum is a traditional medicinal plant that contains various secondary metabolites. As an active component in H. perforatum, melatonin plays important role in plant antioxidation, growth, and photoperiod regulation. Serotonin N-acetyltransferase (SNAT) is the key enzyme involved in the last or penultimate step of phytomelatonin biosynthesis. A total of 48 members of SNAT family were screened and analyzed based on the whole genome data of H. perforatum, and two SNAT genes (HpSNAT1 and HpSNAT2) were functionally verified to be involved in the biosynthesis of melatonin. It was found that HpSNAT1 and HpSNAT2 were highly expressed in the leaves and showed obvious responses to high salt and drought treatment. Subcellular localization analysis indicated that these two proteins were both localized in the chloroplasts by the Arabidopsis protoplasts transient transfection. Overexpression of HpSNAT1 and HpSNAT2 in Arabidopsis (SNAT) and H. perforatum (wild-type) resulted in melatonin content 1.9-2.2-fold and 2.5-4.2-fold higher than that in control groups, respectively. Meanwhile, SNAT-overexpressing Arabidopsis plants showed a stronger ability of root growth and scavenging endogenous reactive oxygen species. In this study, the complete transgenic plants of H. perforatum were obtained through Agrobacterium-mediated genetic transformation for the first time, which laid a significant foundation for further research on the function of key genes in H. perforatum.

7.
ACS Omega ; 5(10): 4924-4936, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32201778

RESUMO

To meet the increasing need for clean combustion, improve the combustion efficiency of fuels, and reduce the pollutants produced in the combustion process, it is necessary to systematically study the combustion of hydrocarbon fuels. An accurate and detailed chemical kinetic model is an important prerequisite for understanding the combustion performance of hydrocarbon fuels and studying complex chemical reaction networks. Therefore, based on ReaxGen, new detailed mechanisms for the low-temperature combustion of n-nonane are proposed and verified in detail in this study. Meanwhile, some international mainstream combustion models such as the LLNL model and the JetSurf 2.0 model are compared with ours, showing that the proposed new mechanisms can better predict the ignition delay combustion characteristics of n-nonane, and they also hold in a wide range of conditions. In addition, the numerical simulation results of the concentration curve calculated for the new mechanisms, especially Model v2, are in good agreement with the experimental data, and the mechanisms can reproduce the performance of the negative-temperature-coefficient behavior toward n-nonane ignition. The numerical simulation results of the laminar flame propagation velocity varying with the equivalence ratio are also in good agreement with the available experimental data. Finally, the ignition delay sensitivity of n-nonane is analyzed by the sensitivity analysis method; the key reactions affecting the ignition mechanism are investigated; and the reaction path analysis is conducted to better understand the models' predicted performance. In a word, the new mechanisms are helpful to understand the ignition properties of large hydrocarbon fuels for high-speed aircrafts.

8.
J Hazard Mater ; 398: 122863, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32485507

RESUMO

To develop an efficient heterogeneous Fenton-like catalyst is of great importance for degrading organic pollutants. CeO2 was selected as the catalyst carrier. Prussian blue (PB) was chose as the iron resource for its sensitivity to H2O2 and low toxicity. PB modified CeO2 composite was successfully fabricated and used for Fenton-like oxidation of norfloxacin (NOR) in this study. The characteristics of the catalysts demonstrated that the doping of PB distorted the lattice locally and increased the surface area of CeO2 obviously. The XPS analysis also indicated that chemically supported catalysts PB/CeO2 with more Ce3+ was beneficial to Fenton-like catalytic reaction. The degradation tests showed that the PB/CeO2 significantly enhanced the removal of NOR which indicated a synergistic effect between PB and CeO2. The reason should be mainly attributed to the synergetic catalysis of H2O2 by Fe3+/Fe2+ and Ce3+/Ce4+ redox couples. At the same time, PB/CeO2 composite showed well reusability and wide pH value range of 2-9 with fairly low concentration of iron ions. The reaction mechanisms were identified to be OH oxidation and improvement of oxygen vacancies (OVs).


Assuntos
Norfloxacino , Oxigênio , Catálise , Ferrocianetos , Peróxido de Hidrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA