Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163113

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive foliar diseases of wheat. In this study, we combined the bulked segregant RNA sequencing (BSR-seq) and comparative genomics analysis to localize the powdery mildew resistance gene in Chinese landrace Xiaomaomai. Genetic analysis of F1 plants from a crossing of Xiaomaomai × Lumai23 and the derived F2 population suggests that a single recessive gene, designated as pmXMM, confers the resistance in this germplasm. A genetic linkage map was constructed using the newly developed SNP markers and pmXMM was mapped to the distal end of chromosome 2AL. The two flanking markers 2AL15 and 2AL34 were closely linked to pmXMM at the genetic distance of 3.9 cM and 1.4 cM, respectively. Using the diagnostic primers of Pm4, we confirmed that Xiaomaomai carries a Pm4 allele and the gene function was further validated by the virus-induced gene silencing (VIGS). In addition, we systematically analyzed pmXMM in comparison with the other Pm4 alleles. The results suggest that pmXMM is identical to Pm4d and Pm4e at sequence level. Pm4b is also not different from Pm4c according to their genome/amino acid sequences. Only a few nucleotide variances were detected between pmXMM and Pm4a/b, which indicate the haplotype variation of the Pm4 gene.


Assuntos
Ascomicetos/fisiologia , Cromossomos de Plantas/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Mapeamento Cromossômico , Resistência à Doença/imunologia , Ligação Genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Triticum/imunologia , Triticum/microbiologia
2.
Theor Appl Genet ; 132(11): 2947-2963, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31324930

RESUMO

KEY MESSAGE: Three major loci for pre-harvest sprouting tolerance (PHST) were mapped on chromosomes 1AL, 3BS, and 6BL, and two CAPS and one dCAPS markers were validated. Sixteen lines with favorable alleles and increased PHST were identified. Pre-harvest sprouting (PHS) significantly affects wheat grain yield and quality. In the present study, the PHS tolerance (PHST) of 192 wheat varieties (lines) was evaluated by assessment of field sprouting, seed germination index, and period of dormancy in different environments. A high-density Illumina iSelect 90K SNP array was used to genotype the panel. A genome-wide association study (GWAS) based on single- and multi-locus mixed linear models was used to detect loci for PHST. The single-locus model identified 23 loci for PHST (P < 0.0001) and explained 6.0-18.9% of the phenotypic variance. Twenty loci were consistent with known quantitative trait loci (QTLs). Three single-nucleotide polymorphism markers closely linked with three major loci (Qphs.ahau-1A, Qphs.ahau-3B, and Qphs.ahau-6B) on chromosomes 1AL, 3BS, and 6BL, respectively, were converted to two cleaved amplified polymorphic sequences (CAPS) and one derived-CAPS markers, and validated in 374 wheat varieties (lines). The CAPS marker EX06323 for Qphs.ahau-6B co-segregated with a novel major QTL underlying PHST in a recombinant inbred line population raised from the cross Jing 411 × Wanxianbaimaizi. Linear regression showed a clear dependence of PHST on the number of favorable alleles. Sixteen varieties showing an elevated degree of PHST were identified and harbored more than 16 favorable alleles. The multi-locus model detected 39 marker-trait associations for PHST (P < 0.0001), of which five may be novel. Six loci common to the two models were identified. The combination of the two GWAS methods contributes to efficient dissection of the complex genetic mechanism of PHST.


Assuntos
Germinação/genética , Triticum/genética , Alelos , Mapeamento Cromossômico , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/fisiologia , Triticum/fisiologia
3.
Theor Appl Genet ; 131(3): 539-553, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29150697

RESUMO

KEY MESSAGE: A novel TaGW2-A1 allele was identified from a stable, robust QTL region, which is pleiotropic for thousand grain weight, grain number per spike, and grain morphometric parameters in wheat. Thousand grain weight (TGW) and grain number per spike (GNS) are two crucial determinants of wheat spike yield, and genetic dissection of their relationships can help to fine-tune these two components and maximize grain yield. By evaluating 191 recombinant inbred lines in 11 field trials, we identified five genomic regions on chromosomes 1B, 3A, 3B, 5B, or 7A that solely influenced either TGW or GNS, and a further region on chromosome 6A that concurrently affected TGW and GNS. The QTL of interest on chromosome 6A, which was flanked by wsnp_BE490604A_Ta_2_1 and wsnp_RFL_Contig1340_448996 and designated as QTgw/Gns.cau-6A, was finely mapped to a genetic interval shorter than 0.538 cM using near isogenic lines (NILs). The elite NILs of QTgw/Gns.cau-6A increased TGW by 8.33%, but decreased GNS by 3.05% in six field trials. Grain Weight 2 (TaGW2-A1), a well-characterized gene that negatively regulates TGW and grain width in wheat, was located within the finely mapped interval of QTgw/Gns.cau-6A. A novel and rare TaGW2-A1 allele with a 114-bp deletion in the 5' flanking region was identified in the parent with higher TGW, and it reduced TaGW2-A1 promoter activity and expression. In conclusion, these results expand our knowledge of the genetic and molecular basis of TGW-GNS trade-offs in wheat. The QTLs and the novel TaGW2-A1 allele are likely useful for the development of cultivars with higher TGW and/or higher GNS.


Assuntos
Genes de Plantas , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Triticum/genética , Alelos , Sequência de Bases , Mapeamento Cromossômico , Grão Comestível/genética , Ligação Genética , Repetições de Microssatélites , Fenótipo
4.
Front Genet ; 11: 584859, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262789

RESUMO

Improvement of grain weight and size is an important objective for high-yield wheat breeding. In this study, 174 recombinant inbred lines (RILs) derived from the cross between Jing 411 and Hongmangchun 21 were used to construct a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq). Three mapping methods, including inclusive composite interval mapping (ICIM), genome-wide composite interval mapping (GCIM), and a mixed linear model performed with forward-backward stepwise (NWIM), were used to identify QTLs for thousand grain weight (TGW), grain width (GW), and grain length (GL). In total, we identified 30, 15, and 18 putative QTLs for TGW, GW, and GL that explain 1.1-33.9%, 3.1%-34.2%, and 1.7%-22.8% of the phenotypic variances, respectively. Among these, 19 (63.3%) QTLs for TGW, 10 (66.7%) for GW, and 7 (38.9%) for GL were consistent with those identified by genome-wide association analysis in 192 wheat varieties. Five new stable QTLs, including 3 for TGW (Qtgw.ahau-1B.1, Qtgw.ahau-4B.1, and Qtgw.ahau-4B.2) and 2 for GL (Qgl.ahau-2A.1 and Qgl.ahau-7A.2), were detected by the three aforementioned mapping methods across environments. Subsequently, five cleaved amplified polymorphic sequence (CAPS) markers corresponding to these QTLs were developed and validated in 180 Chinese mini-core wheat accessions. In addition, 19 potential candidate genes for Qtgw.ahau-4B.2 in a 0.31-Mb physical interval were further annotated, of which TraesCS4B02G376400 and TraesCS4B02G376800 encode a plasma membrane H+-ATPase and a serine/threonine-protein kinase, respectively. These new QTLs and CAPS markers will be useful for further marker-assisted selection and map-based cloning of target genes.

5.
Front Plant Sci ; 7: 1617, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27872629

RESUMO

Wheat yield can be enhanced by modifying the spike morphology and the plant height. In this study, a population of 191 F9 recombinant inbred lines (RILs) was developed from a cross between two winter cultivars Yumai 8679 and Jing 411. A dense genetic linkage map with 10,816 markers was constructed by incorporating single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker information. Five spike morphological traits and plant height were evaluated under nine environments for the RILs and parental lines, and the number of detected environmentally stable QTLs were 18 and three, respectively. The 1RS/1BL (rye) translocation increased both spike length and spikelet number with constant spikelet compactness. The QPht.cau-2D.1 was identical to gene Rht8, which decreased spike length without modifying spikelet number. Notably, four novel QTLs locating on chromosomes 1AS (QSc.cau-1A.1), 2DS (QSc.cau-2D.1), and 7BS (QSl.cau-7B.1 and QSl.cau-7B.2) were firstly identified in this study, which provide further insights into the genetic factors that shaped the spike morphology in wheat. Moreover, SNP markers tightly linked to previously reported QTLs will eventually facilitate future studies including their positional cloning or marker-assisted selection.

6.
PLoS One ; 10(12): e0144765, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26657796

RESUMO

Cytokinin oxidase (CKX) plays a crucial role in plant growth and development by reversibly inactivating cytokinin (CTK). Twenty-four primer pairs, designed from ESTs of the TaCKX genes family of common wheat, were used to identify their allelic variations associated with grain size, weight, and filling rate in 169 recombinant inbred lines (RIL) derived from Jing 411 × Hongmangchun 21. TaCKX6a02, a member of TaCKX gene family, amplified by primer pair T31-32, showed a close association with grain traits in this RIL population. Statistical analysis indicated that allelic variation of TaCKX6a02 had significant correlation with grain size, weight, and filling rate (GFR; P < 0.001) under varied environments. The TaCKX6a02-D1a allele from Jing411 significantly increased grain size, weight and grain filling rate, compared with TaCKX6a02-D1b from Hongmangchun 21. TaCKX6a02 was located on chromosome 3DS in the interval of Xbarc1119 and Xbarc1162, with a genetic distance of 1.4 cM. The location was further confirmed using Chinese Spring nulli-tetrasomic lines. A major QTL (quantitative trait locus) tightly linked to TaCKX6a02 was detected in the RIL population, explaining 17.1~38.2% of phenotype variations for grain size, weight, GFRmax and GFRmean in different environments. In addition, significant effects of variations of TaCKX6a02 on grain weight and GFR were further validated by association analysis among 102 wheat varieties in two cropping seasons. 12.8~35.1% of phenotypic variations were estimated for these genotypes. A novel 29-bp InDel behind the stop codon was detected by DNA sequence analysis between the two alleles of TaCKX6a02-D1. The gene-specific marker, TKX3D, was designed according to the novel variation, and can be used in marker-assisted selection (MAS) for grain size, weight, and GFR in common wheat.


Assuntos
Alelos , Oxirredutases/genética , Triticum/enzimologia , Triticum/genética , Citocininas , Grão Comestível/genética , Genes de Plantas , Estudos de Associação Genética , Marcadores Genéticos/genética , Mapeamento Físico do Cromossomo , Locos de Características Quantitativas , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA