Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Immunol ; 212(2): 317-334, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38054894

RESUMO

The ancestors of chemokines originate in the most primitive of vertebrates, which has recently attracted great interest in the immune functions and the underlying mechanisms of fish chemokines. In the current study, we identified an evolutionarily conserved chemokine, CiCXCL13, from a teleost fish, grass carp. CiCXCL13 was characterized by a typical SCY (small cytokine CXC) domain and four cysteine residues (C34, C36, C61, C77), with the first two cysteines separated by a random amino acid residue, although it shared 24.2-54.8% identity with the counterparts from other vertebrates. CiCXCL13 was an inducible chemokine, whose expression was significantly upregulated in the immune tissues of grass carps after grass carp reovirus infection. CiCXCL13 could bind to the membrane of grass carp head kidney leukocytes and promote cell migration, NO release, and the expression of >15 inflammatory cytokines, including IL-1ß, TNF-α, IL-10 and TGF-ß1, thus regulating the inflammatory response. Mechanistically, CiCXCL13 interacted with its evolutionarily conserved receptor CiCXCR5 and activated the Akt-NF-κB and p38-AP-1 pathways, as well as a previously unrevealed p38-NF-κB pathway, to efficiently induce inflammatory cytokine expression, which was distinct from that reported in mammals. Zebrafish CXCL13 induced inflammatory cytokine expression through Akt, p38, NF-κB, and AP-1 as CiCXCL13. Meanwhile, the CiCXCL13-CiCXCR5 axis-mediated inflammatory activity was negatively shaped by grass carp atypical chemokine receptor 2 (CiACKR2). The present study is, to our knowledge, the first to comprehensively define the immune function of CXCL13 in inflammatory regulation and the underlying mechanism in teleosts, and it provides a valuable perspective on the evolution and biology of fish chemokines.


Assuntos
Carpas , Doenças dos Peixes , Animais , NF-kappa B/metabolismo , Citocinas , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição AP-1/metabolismo , Peixe-Zebra/metabolismo , Quimiocinas , Carpas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Mamíferos/metabolismo
3.
PLoS Pathog ; 19(4): e1011320, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37099596

RESUMO

Viral seasonality in the aquaculture industry is an important scientific issue for decades. While the molecular mechanisms underpinning the temperature-dependent pathogenesis of aquatic viral diseases remain largely unknown. Here we report that temperature-dependent activation of IL6-STAT3 signaling was exploited by grass carp reovirus (GCRV) to promote viral entry via increasing the expression of heat shock protein 90 (HSP90). Deploying GCRV infection as a model system, we discovered that GCRV induces the IL6-STAT3-HSP90 signaling activation to achieve temperature-dependent viral entry. Further biochemical and microscopic analyses revealed that the major capsid protein VP7 of GCRV interacted with HSP90 and relevant membrane-associated proteins to boost viral entry. Accordingly, exogenous expression of either IL6, HSP90, or VP7 in cells increased GCRV entry in a dose-dependent manner. Interestingly, other viruses (e.g., koi herpesvirus, Rhabdovirus carpio, Chinese giant salamander iridovirus) infecting ectothermic vertebrates have evolved a similar mechanism to promote their infection. This work delineates a molecular mechanism by which an aquatic viral pathogen exploits the host temperature-related immune response to promote its entry and replication, instructing us on new ways to develop targeted preventives and therapeutics for aquaculture viral diseases.


Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Reoviridae , Animais , Internalização do Vírus , Interleucina-6/metabolismo , Infecções por Reoviridae/metabolismo , Proteínas do Capsídeo/metabolismo , Anticorpos Antivirais/metabolismo
4.
Fish Shellfish Immunol ; 151: 109712, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901682

RESUMO

The grass carp (Ctenopharyngodon idella) constitutes a significant economic resource within the aquaculture sector of our nation, yet it has been chronically afflicted by the Grass Carp Reovirus (GCRV) disease. The complement system, a vital component of fish's innate immunity, plays a crucial role in combating viral infections. This research investigates the potential role of MASP1, a key molecule in the lectin pathway of the complement system, in the GCRV infection in grass carp. An analysis of the molecular characteristics of MASP1 in grass carp revealed that its identity and similarity percentages range from 35.10 to 91.00 % and 35.30-91.00 %, respectively, in comparison to other species. Phylogenetically, MASP1 in C. idella aligns closely with species such as Danio rerio, Cyprinus carpio, and Carassius carassius, exhibiting chromosomal collinearity with the zebrafish. Subsequent tissue analysis in both healthy and GCRV-infected grass carp indicated that MASP1's basal expression was predominantly in the liver. Post-GCRV infection, MASP1 expression in various tissues exhibited temporal variations: peaking in the liver on day 5, spleen on day 7, and kidney on day 14. Furthermore, employing Complement Component 3 (C3) as a benchmark for complement system activation, it was observed that MASP1 could activate and cleave C3 to C3b. MASP1 also demonstrated an inhibitory effect on GCRV replication (compared with the control group, VP2 and VP7 decreased by 6.82-fold and 4.37-fold) and enhanced the expression of antiviral genes, namely IRF3, IRF7 and IFN1 (compared with the control group, increased 2.25-fold, 45.38-fold and 22.37-fold, respectively). In vivo protein injection experiments substantiated MASP1's influence on the relative mRNA expression levels of C3 in various tissues and its protein expression in serum. This study also verified that C3 could modulate the expression of antiviral genes such as IFN1 and IRF3.

5.
Fish Shellfish Immunol ; 144: 109272, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061442

RESUMO

Yellow catfish (Pelteobagrus fulvidraco) is an important economic species of freshwater fish, widely distributed in China. Recently, viral diseases of yellow catfish have been identified in Chian (Hubei province), arising more attention to the viral immunity in P. fulvidraco. Tumor necrosis factor (TNF) receptor-associated factor NF-κB activator (TANK)-binding kinase 1 (TBK1) plays an essential role in IFN production and innate antiviral immunity. In the present study, we characterized the P. fulvidraco TBK1 (PfTBK1) and reported its function in interferon response. The full-length open reading frame (ORF) is 2184 bp encoding a protein with 727 amino acids, which is composed of four conserved domains, including KD, ULD, CCD1, and CCD2, similar to TBK1 in other species. Pftbk1 was widely expressed in all detected tissues by qPCR and was not inducible by the spring viremia of carp virus (SVCV), a single-strand RNA virus. In addition, the cellular distribution indicated that PfTBK1 was only located in the cytoplasm. Moreover, PfTBK1 induced strong IFN promoter activities through the Jak-stat pathway, and PfTBK1 interacted with and significantly phosphorylated IFN regulatory factor 3/7 (IRF3/7) in P. fulvidraco, promoting the nuclear translocation of pfIRF3 and PfIRF7, and PfTBK1 upregulated IFN response by PfTBK1-PfIRF3/7 axis. Above all, PfTBK1 triggered IFN response and strongly inhibited the replication of SVCV in EPC cells through induction of IFN downstream IFN-stimulated genes (ISGs). Summarily, this work reveals that PfTBK1 plays a positive regulatory role in IFN induction through the TBK1-IRF3/7 axis, laying a foundation for further exploring the molecular mechanism of the antiviral process in P. fulvidraco.


Assuntos
Peixes-Gato , Interferons , Animais , Interferons/metabolismo , Transdução de Sinais , Fator Regulador 3 de Interferon/genética , Peixes-Gato/genética , Peixes-Gato/metabolismo , Janus Quinases , Fatores de Transcrição STAT , Imunidade Inata/genética
6.
Fish Shellfish Immunol ; 148: 109477, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447782

RESUMO

Proteins from the C1q domain-containing (C1qDC) family recognize self-, non-self-, and altered-self ligands and serves as an initiator molecule for the classical complement pathway as well as recognizing immune complexes. In this study, C1qDC gene family members were identified and analyzed in grass carp (Ctenopharyngodon idellus). Members of the C1q subfamily were cloned, and their response to infection with the grass carp virus was investigated. In the grass carp genome, 54 C1qDC genes and 67 isoforms have been identified. Most were located on chromosome 3, with 52 shared zebrafish homologies. Seven substantially differentially expressed C1qDC family genes were identified in the transcriptomes of cytokine-induced killer (CIK) cells infected with grass carp reovirus (GCRV), all of which exhibited sustained upregulation. The opening reading frames of grass carp C1qA, C1qB, and C1qC, belonging to the C1q subfamily, were determined to be 738, 732, and 735 base pairs, encoding 245, 243, and 244 amino acids with molecular weights of 25.81 kDa, 25.63 kDa and 26.16 kDa, respectively. Three genes were detected in the nine collected tissues, and their expression patterns were similar, with the highest expression levels observed in the spleen. In vivo after GCRV infection showed expression trends of C1qA, C1qB, and C1qC in the liver, spleen, and kidney. An N-type pattern in the liver and kidney was characterized by an initial increase followed by a decrease, with the highest expression occurring during the recovering period, and a V-type pattern in the spleen with the lowest expression levels during the death period. In vitro, after GCRV infection showed expression trends of C1qA, C1qB, and C1qC, and this gradually increased within the first 24 h, with a notable increase observed at the 24 h time point. After CIK cells incubation with purified recombinant proteins, rC1qA, rC1qB, and rC1qC for 3 h, followed by GCRV inoculation, the GCRV replication indicated that rC1qC exerted a substantial inhibitory effect on viral replication in CIK cells after 24 h of GCRV inoculation. These findings offer valuable insights into the structure, evolution, and function of the C1qDC family genes and provide a foundational understanding of the immune function of C1q in grass carp.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , Carpas/genética , Carpas/metabolismo , Peixe-Zebra , Complemento C1q/genética , Reoviridae/fisiologia , Proteínas do Sistema Complemento , Proteínas de Peixes/química
7.
Fish Shellfish Immunol ; 149: 109564, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631439

RESUMO

Grass carp reovirus (GCRV) infections and hemorrhagic disease (GCHD) outbreaks are typically seasonally periodic and temperature-dependent, yet the molecular mechanism remains unclear. Herein, we depicted that temperature-dependent IL-6/STAT3 axis was exploited by GCRV to facilitate viral replication via suppressing type Ⅰ IFN signaling. Combined multi-omics analysis and qPCR identified IL-6, STAT3, and IRF3 as potential effector molecules mediating GCRV infection. Deploying GCRV challenge at 18 °C and 28 °C as models of resistant and permissive infections and switched to the corresponding temperatures as temperature stress models, we illustrated that IL-6 and STAT3 expression, genome level of GCRV, and phosphorylation of STAT3 were temperature dependent and regulated by temperature stress. Further research revealed that activating IL-6/STAT3 axis enhanced GCRV replication and suppressed the expression of IFNs, whereas blocking the axis impaired viral replication. Mechanistically, grass carp STAT3 inhibited IRF3 nuclear translocation via interacting with it, thus down-regulating IFNs expression, restraining transcriptional activation of the IFN promoter, and facilitating GCRV replication. Overall, our work sheds light on an immune evasion mechanism whereby GCRV facilitates viral replication by hijacking IL-6/STAT3 axis to down-regulate IFNs expression, thus providing a valuable reference for targeted prevention and therapy of GCRV.


Assuntos
Carpas , Doenças dos Peixes , Interferon Tipo I , Interleucina-6 , Infecções por Reoviridae , Reoviridae , Fator de Transcrição STAT3 , Transdução de Sinais , Replicação Viral , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Reoviridae/fisiologia , Carpas/imunologia , Carpas/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética
8.
Fish Shellfish Immunol ; 142: 109154, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821003

RESUMO

Ctenopharyngodon idella and Squaliobarbus curriculus, members of the Cyprinidae family and Yaroideae subfamily, have shown different levels of resistance to grass carp reo virus (GCRV), with S. curriculus exhibiting higher resilience. In the pursuit to explore the distinctions in the structural and expression traits of BF/C2 (A,B) between the two species, we conducted an analysis involving the cloning and examination of various coding sequences (CDS). We successfully cloned the CDS of ci-BF/C2A and ci-BF/C2B from C. idella, which spanned 2259 bp and 2514 bp respectively, encoding 752 and 837 amino acids. Similarly, the CDS of sc-BF/C2A and sc-BF/C2B from S. curriculus were cloned, featuring lengths of 1353 bp and 2517 bp and encoding 450 and 838 amino acids, respectively. A chromosome collinearity assessment revealed that ci-BF/C2A demonstrated collinearity with sc-BF/C2A, a finding not replicated with ci-BF/C2B and sc-BF/C2B. Delving into gene structure, we discerned that ci-BF/C2A harbored a greater number of Tryp_SPc domains compared to sc-BF/C2A. Following this, we engineered and purified six prokaryotic recombinant proteins: CI-BF/C2A, CI-BF/C2A1 (a variant resulting from the deletion of the Tryp_SPc domain of CI-BF/C2A), CI-BF/C2A2 (representing the Tryp_SPc domain of CI-BF/C2A), CI-BF/C2B, SC-BF/C2A, and SC-BF/C2B. Through serum co-incubation tests with these recombinant proteins, we established the activation of the complement marker C3 in each case. Utilizing fluorescence quantitative expression analysis, we observed ubiquitous expression of ci-BF/C2A and ci-BF/C2B across all grass carp tissues, predominantly in the liver. This pattern mirrored in S. curriculus, where sc-BF/C2A was highly expressed in the gills, and sc-BF/C2B manifested notably in the liver. Kidney cell infection experiments on both species revealed enhanced resistance to GCRV post-incubation with the recombinant proteins. Notably, cells treated with SC-BF/C2 (A, B) exhibited pronounced resilience compared to those treated with CI-BF/C2 (A, B, A1, A2). However, cells incubated with CI-BF/C2A1 and CI-BF/C2A2 showed strengthen resistance relative to cells treated with CI-BF/C2A and CI-BF/C2B. In GCRV infection trials on grass carp, ci-BF/C2A and ci-BF/C2B expressions reached a zenith on the seventh day post-infection, highlighting a distinctive functional mode in immune defense against GCRV infection orchestrated by BF/C2. The empirical data underscores the pivotal role of the Tryp_SPc domain in immune responses to GCRV infection, pinpointing its influence on ci-BF/C2A expression. Conclusively, this investigation provides a foundational understanding of the unique immune function characteristics of BF/C2 in grass carp, paving the way for further scholarly exploration in this realm.


Assuntos
Carpas , Cyprinidae , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , Sequência de Aminoácidos , Carpas/genética , Carpas/metabolismo , Reoviridae/fisiologia , Proteínas Recombinantes , Aminoácidos , Proteínas de Peixes/química
9.
Fish Shellfish Immunol ; 142: 109153, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821004

RESUMO

To decipher the functional characterization of Nucleophosmin 1a (NPM1a) from grass carp (Ctenopharyngodon idellus) (CiNPM1a), its cDNA was cloned and bioinformatic analysis were conducted. The full-length cDNA sequence of CiNPM1a is 1732 bp, which encodes 307 amino acids. CiNPM1a contains conserved domains of Nucleoplasmin domain, NPM1-C terminal domain, as well as nuclear localization signals, nuclear export signal (NES) and acid patches. There are 52 and 20 consensus amino acids exist in the Nucleoplasmin domain and the NPM1-C terminal domain of all blasted species. In addition, the immune function of CiNPM1a were analyzed. The Ciirf7, Ciifn1 and Ciifn2 transcription was inhibited, whereas the vp2 and vp7 expressions were enhanced in CiNPM1a overexpressing cells after GCRV infection (P < 0.05). Moreover, the Ciirf7, Ciifn1 and Ciifn2 mRNA levels were significantly up-regulated, but the vp2 and vp7 expressions were significantly down-regulated in CiNPM1a knockdown cells after infection. This indicated that CiNPM1a played negative roles in the induction of Type I IFN reaction and thus the GCRV replication. Finally, the NES domain that affect the nucleous-cytoplasm shuttle and the replication of GCRV were investigated. The deletion of NES1 and NES(1 + 2+3) absolutely limited the transloacation of CiNPM1a△NES1 protein and CiNPM1a △NES(1 + 2+3) protein to cytoplasm after infection, and the deletion of NES2 resulted in partially limitation of protein shuttle. In general, Ciirf3, Ciirf7, Ciifn1 and Ciifn2 expressions were enhanced in the CiNPM1a△NES1, CiNPM1a△NES2 and CiNPM1a△NES3 overexpression groups, and the deletion of functional domains in CiNPM1a led to significantly reduction of the vp2 and vp7 replication. The results indicated that CiNPM1a may be a target molecular for GCRV infection curation, and a candidate molecular for resistance strain breeding of grass carp.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , DNA Complementar , Nucleofosmina , Nucleoplasminas , Carpas/metabolismo , Citoplasma/metabolismo , Aminoácidos , Proteínas de Peixes
10.
Fish Shellfish Immunol ; 131: 381-390, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257552

RESUMO

The present study was conducted to investigate the dietary replacement of fish meal with poultry by-product meal (PBM) on the growth performance, immunity, antioxidant properties, and intestinal health of red swamp crayfish (Procambarus clarkia). A diet containing 20% fish meal (FM) and complex plant ingredients as the main protein resources was set as the FM group (crude protein 32%, crude lipid 6%). Four diets replacing 25%, 50%, 75%, and 100% fish meal of the FM diet with PBM were set as the PBM25, PBM50, PBM75, and PBM100 groups, respectively. Compared to the FM group, the PBM100 diet significantly decreased growth performance and feed utilization of crayfish, while markedly increasing the activity of serum aspartate aminotransferase. The immune response was depressed in crayfish fed the PBM100 diet as the activities of serum lysozyme and phenoloxidase, gene expression of anti-lipopolysaccharide factors (alf), cyclophilin A (cypa), crustin, and hemocyanin-1 (hep-1) in hepatopancreas were remarkably decreased. The activities of antioxidases and expression of antioxidant-relevant genes in the hepatopancreas were not influenced by PBM inclusion. Crayfish fed different diets exhibited no obvious symptoms of enteritis, but the PBM100 diet destructed intestinal morphology by significantly decreasing the average length of longitudinal ridges. The α-diversity and overall community structure were not significantly influenced but variations were found in the relative abundance of some genera by PBM inclusion. In summary, CAP could successfully replace 75% dietary FM in a basal diet containing 20% fish meal, while higher CAP level compromised growth performance, immunity, and intestinal histology of crayfish.


Assuntos
Astacoidea , Clarkia , Animais , Ração Animal/análise , Antioxidantes/farmacologia , Aves Domésticas , Imunidade Inata , Dieta/veterinária , Peixes
11.
Fish Shellfish Immunol ; 129: 52-63, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35995370

RESUMO

Integrins are α-ß heterodimeric cell receptors that can bind the protein components of pathogens, and play crucial roles in mammalian immune responses, but the immune functions mediated by integrins remains largely unknown in teleost fish. In this study, an integrin αvß3 (GCαvß3) originally assembled by αv (GCαv) and ß3 (GCß3) subunits, was identified from a teleost fish grass carp Ctenopharyngodon idella. The pairwise alignment analyses showed that the amino acid sequences of GCαv and GCß3 shared high similarity (75.2-95.1%) and identity (58.6-90.7%) with their homologs from other vertebrates. Both GCαv and GCß3 harbored the conserved protein domains and motifs, and were clustered in fish branch of the phylogenetic tree containing the counterparts from various vertebrates. Co-immunoprecipitation displayed that GCß3 could interact with the grass carp reovirus (GCRV) outer capsid protein VP5. Two incubation experiments revealed that the interaction of GCRV or VP5 proteins with GCß3 could induce the expressions of type I interferons (IFNs) including IFN2 and IFN3 in grass carp ovary cell line. The functional analysis demonstrated that GCαvß3 served as a receptor of viral protein components to be involved in antiviral immunity as human integrin αvß3 did. In addition, both GCαv and GCß3 were significantly upregulated in various tissues of grass carp after GCRV infection. This study might provide fundamental basis for understanding the molecular characteristics and immune functions of GCαvß3, and offer a new insight into the antiviral immune mechanism specific to the integrins in grass carp.


Assuntos
Carpas , Doenças dos Peixes , Interferon Tipo I , Infecções por Reoviridae , Reoviridae , Animais , Antivirais , Proteínas do Capsídeo , Carpas/genética , Carpas/metabolismo , Proteínas de Peixes/química , Humanos , Integrina alfaVbeta3/genética , Mamíferos/metabolismo , Filogenia , Reoviridae/fisiologia
12.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743279

RESUMO

Ferritin possesses an immune function to defend against pathogen infection. To elucidate the immunity-protecting roles of ferritin from Ctenopharyngodon idellus (Ciferritin) against virus infection, the cDNA and promoter sequences of Ciferritin were determined, and the correlations between Ciferrtin expressions and promoter methylation levels were analyzed. In addition, the functional role of Ciferrtin on GCRV (grass carp reovirus) infection was assessed. The full-length cDNA of Ciferritin is 1053 bp, consists of a 531 bp open-reading frame, and encodes 176 amino acids. Ciferritin showed the highest sequence identity with the ferritin middle subunit of Mylopharyngodon piceus (93.56%), followed by the subunits of Megalobrama amblycephala and Sinocyclocheilus rhinocerous. Ciferritin contains a conserved ferritin domain (interval: 10−94 aa), and the caspase recruitment domain (CARD) and Rubrerythrin domain were also predicted. In the spleen and kidney, significantly higher Ciferritin expressions were observed at 6, 12, 24, or 168 h post GCRV infection than those in the PBS injection group (p < 0.05). The Ciferrtin expression level in the progeny of maternal-immunized grass carp was significantly higher than that in the progeny of common grass carp (p < 0.05). Ciferritin promoter methylation level in the progeny from common grass carp was 1.27 ± 0.15, and in the progeny of the maternal-immunized group was 1.00 ± 0.14. In addition, methylation levels of "CpG9" and "CpG10" loci were significantly lower in the progeny of maternal-immunized fish than those in the common group. Except for the "CpG5", methylation levels of all other detected "CpG" loci negatively correlated with Ciferritin expression levels. Furthermore, the total methylation level of "CpG1−10" negatively correlated with the Ciferritin expressions. The Ciferritin expression level was significantly up-regulated, and the VP7 protein levels were significantly reduced, at 24 h post GCRV infection in the Ciferritin over-expression cells (p < 0.05). The results from the present study provide sequence, epigenetic modification and expression, and anti-GCRV functional information of Ciferritin, which provide a basis for achieving resistance to GCRV in grass carp breeding.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Sequência de Aminoácidos , Animais , Carpas/genética , Carpas/metabolismo , DNA Complementar/genética , Ferritinas/genética , Ferritinas/metabolismo , Proteínas de Peixes/metabolismo , Filogenia , Reoviridae/genética , Infecções por Reoviridae/genética , Infecções por Reoviridae/veterinária
13.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232671

RESUMO

Complement factor I (CFI), a complement inhibitor, is well known for regulating the complement system activation by degrading complement component 3b (C3b) in animal serum, thus becoming involved in innate defense. Nevertheless, the functional mechanisms of CFI in the complement system and in host-pathogen interactions are far from being clarified in teleost fish. In the present study, we cloned and characterized the CFI gene, CiCFI, from grass carp (Ctenopharyngodon idella) and analyzed its function in degrading serum C3b and expression changes after grass carp reovirus (GCRV) infection. The open reading frame of CiCFI was found to be 2121 bp, encoding 706 amino acids with a molecular mass of 79.06 kDa. The pairwise alignments showed that CiCFI shared the highest identity (66.9%) with CFI from Carassius gibelio and the highest similarity (78.7%) with CFI from Danio rerio. The CiCFI protein was characterized by a conserved functional core Tryp_SPc domain with the catalytic triad and substrate binding sites. Phylogenetic analysis indicated that CiCFI and the homologs CFIs from other teleost fish formed a distinct evolutionary branch. Similar with the CFIs reported in mammals, the recombinant CiCFI protein could significantly reduce the C3b content in the serum, demonstrating the conserved function of CiCFI in the complement system in the grass carp. CiCFI mRNA and protein showed the highest expression level in the liver. After GCRV infection, the mRNA expressions of CiCFI were first down-regulated, then up-regulated, and then down-regulated to the initial level, while the protein expression levels maintained an overall downward trend to the late stage of infection in the liver of grass carps. Unexpectedly, the protein levels of CiCFI were also continuously down-regulated in the serum of grass carps during GCRV infection, while the content of serum C3b proteins first increases and then returns to the initial level, suggesting a distinct role of CiCFI in regulating complement activation and fish-virus interaction. Combining our previous results that complement factor D, a complement enhancer, shows continuously up-regulated expression levels in grass carps during GCRV infection, and this study may provide the further essential data for the full picture of complex complement regulation mechanism mediated by Df and CFI of the grass carp during pathogen infection.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Aminoácidos/metabolismo , Animais , Carpas/genética , Carpas/metabolismo , Ativação do Complemento , Complemento C3b , Fator D do Complemento/genética , Fator I do Complemento/genética , Fator I do Complemento/metabolismo , Inativadores do Complemento , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Mamíferos/metabolismo , Filogenia , RNA Mensageiro/genética , Reoviridae/fisiologia , Infecções por Reoviridae/genética , Infecções por Reoviridae/veterinária
14.
Environ Microbiol ; 23(1): 431-447, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33201573

RESUMO

Gut microbiota could facilitate host to defense diseases, but fish-microbiota interactions during viral infection and the underlying mechanism are poorly understood. We examined interactions and responses of gut microbiota to grass carp reovirus (GCRV) infection in Ctenopharyngodon idellus, which is the most important aquaculture fish worldwide. We found that GCRV infection group with serious haemorrhagic symptoms (G7s) showed considerably different gut microbiota, especially with an abnormally high abundance of gram-negative anaerobic Cetobacterium somerae. It also showed the lowest (p < 0.05) alpha-diversity but with much higher ecological process of homogenizing dispersal (28.8%), confirming a dysbiosis of the gut microbiota after viral infection. Interestingly, signaling pathways of NOD-like receptors (NLRs), toll-like receptors (TLRs), and lipopolysaccharide (LPS) stimulation genes were significantly (q-value < 0.01) enriched in G7s, which also significantly (p < 0.01) correlated with the core gut microbial genera of Cetobacterium and Acinetobacter. The results suggested that an expansion of C. somerae initiated by GCRV could aggravate host inflammatory reactions through the LPS-related NLRs and TLRs pathways. This study advances our understanding of the interplay between fish immunity and gut microbiota challenged by viruses; it also sheds new insights for ecological defense of fish diseases with the help of gut microbiota.


Assuntos
Carpas/microbiologia , Carpas/virologia , Doenças dos Peixes/virologia , Microbioma Gastrointestinal , Orthoreovirus Mamífero 3/fisiologia , Infecções por Reoviridae/veterinária , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Doenças dos Peixes/microbiologia , Fusobactérias , Interações Hospedeiro-Patógeno , Orthoreovirus Mamífero 3/classificação , Orthoreovirus Mamífero 3/genética , Orthoreovirus Mamífero 3/isolamento & purificação , Infecções por Reoviridae/microbiologia , Infecções por Reoviridae/virologia
15.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34769442

RESUMO

Complement factor D (Df) is a serine protease well known for activating the alternative pathway (AP) in mammals by promoting the cleavage of complement component 3 (C3), thus becoming involved in innate defense. In teleost fish, however, the functional mechanisms of Df in the AP and against pathogen infection are far from clear. In the present study, we cloned and characterized the Df gene, CiDf, from grass carp (Ctenopharyngodon idella) and analyzed its function in promoting C3 cleavage and expression changes after grass carp reovirus (GCRV) infection. The open reading frame of CiDf was found to be 753 bp, encoding 250 amino acids with a molecular mass of 27.06 kDa. CiDf harbors a conserved Tryp_SPc domain, with three conserved residues representing the catalytic triad and three conserved binding sites in the substrate specificity pocket. Pairwise alignment showed that CiDf shares the highest identity (96%) and similarity (98%) with Df from Anabarilius grahami. Phylogenetic analysis indicated that CiDf and other fish Dfs formed a distinct evolutionary branch. Similar to most Dfs from other vertebrates, the CiDf gene structure is characterized by four introns and five exons. The incubation of recombinant CiDf protein with grass carp serum significantly increased the C3b content, demonstrating the conserved function of CiDf in the AP in promoting C3 cleavage, similar to Dfs in mammals. CiDf mRNA expression was widely detected in various tissues and levels were relatively higher in the liver, spleen, and intestine of grass carp. During GCRV infection over a 168-hour period, a high level of CiDf mRNA expression in the liver, spleen, and intestine was maintained at 144 and 168 h, suggesting AP activity at the late stage of GCRV infection. Collectively, the above results reveal the conserved structure and function of CiDf and its distinct expression patterns after GCRV infection, which provide a key basis for studying the roles of Df and AP during GCRV infection in the grass carp C. idella.


Assuntos
Carpas/metabolismo , Fator D do Complemento/metabolismo , Proteínas de Peixes/metabolismo , Infecções por Reoviridae/metabolismo , Reoviridae/fisiologia , Sequência de Aminoácidos , Animais , Carpas/genética , Carpas/virologia , Clonagem Molecular/métodos , Fator D do Complemento/genética , Doenças dos Peixes/genética , Doenças dos Peixes/patologia , Proteínas de Peixes/genética , Filogenia , Infecções por Reoviridae/genética , Infecções por Reoviridae/patologia , Infecções por Reoviridae/virologia , Análise de Sequência de DNA/métodos , Homologia de Sequência de Aminoácidos
16.
Biol Reprod ; 103(4): 769-778, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32697314

RESUMO

The reproductive process is usually controlled by the hypothalamic-pituitary-gonad axis in vertebrates, while Kiss/gonadotropin-releasing hormone (GnRH) system in the hypothalamus is required for mammalian reproduction but dispensable for fish reproduction. The regulation of follicle stimulating hormone/luteinizing hormone (LH) expression in fish species is still unknown. Here, we identified miR-200s on chromosome 23 (chr23-miR-200s) as important regulators for female zebrafish reproduction. Knockout of chr23-miR-200s (chr23-miR-200s-KO) resulted in dysregulated expression of luteinizing hormone beta lhb (luteinizing hormone beta) and some hormone genes in the pituitary as revealed by comparative transcriptome profiling, leading to failure of oocyte maturation and ovulation as well as defects in reproductive duct development. Chr23-miR-200s mainly expressed in the pituitary and regulated lhb expression by targeting the transcription repressor wt1a. Injection of human chorionic gonadotropin (hCG) could rescue the defects of oocyte maturation in chr23-miR-200s-KO zebrafish, whereas GnRH or LHRH-A2 could not, suggesting that Chr23-miR-200s regulated lhb expression in a GnRH-independent pathway. It was remarkable that either injection of carp pituitary extraction, or co-injection of hCG with synthetic oxytocin and vasotocin could greatly rescue the defects of both oocyte maturation and ovulation in chr23-miR-200s-KO zebrafish. Altogether, our findings highlight an important function of chr23-miR-200s in controlling oocyte maturation by regulation LH expression, and oxytocin and vasotocin are potentially responsible for the ovulation in fish species.


Assuntos
Cromossomos/genética , Regulação da Expressão Gênica/fisiologia , MicroRNAs/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Gonadotropina Coriônica/farmacologia , Feminino , Hormônio Foliculoestimulante , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos , Hormônio Luteinizante , Oócitos , Ovulação , Ocitocina/farmacologia , Vasotocina/farmacologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
17.
Fish Shellfish Immunol ; 94: 485-496, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31494278

RESUMO

MDA5 is a cytoplasmic viral double-stranded RNA recognition receptor that plays a pivotal role in the aquatic animal innate immune system. To decipher the role of MDA5 of Squaliobarbus curriculus (ScMDA5) in the immune response, full-length cDNA of ScMDA5 was cloned using the RACE technology, mRNA and protein expression levels of ScMDA5 signalling pathway members in response to stimulation were detected and effects of overexpression of ScMDA5 on the immune response were investigated. ScMDA5 comprises 3597 bp and is composed of an open reading frame (2958 nucleotides long) that translates into a putative peptide of 985 amino acid residues. ScMDA5 possesses two N-terminal caspase-recruiting domains, DEAD-like helicases superfamily, helicase superfamily C-terminal and RIG-I_C-RD domains, and differences in these domains among species were mainly observed with respect to their length and location. ScMDA5 was closely clustered with those of Carassius auratus, Ctenopharyngodon idellus and Mylopharyngodon piceus. ScMDA5 transcripts were most abundant in the spleen and the lowest in the liver. Expression levels of ScMDA5 in healthy tissues were significantly correlated with those of ScIRF3, ScIRF7 and ScIFN. Besides, mRNA expression levels of ScIRF3 were significantly correlated with those of ScIRF7 (0.956, P < 0.01). Expression level changes, including downregulation, upregulation and initial upregulation followed by downregulation, were found in ScMDA5 signalling pathway molecules in tissues after grass carp reovirus infection. Protein levels of ScMDA5 were the highest in the liver and the lowest in the spleen in detected healthy tissues. Overexpression of ScMDA5 led to significantly enhanced CiIRF7 and CiMx transcription in grass carp ovary cells (P < 0.05). The results of this study helped to clarify the role of ScMDA5 in the immune reaction against grass carp reovirus and provided fundamental information for fish breeding to achieve strong resistance to infection.


Assuntos
Cyprinidae/genética , Cyprinidae/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Helicase IFIH1 Induzida por Interferon/química , Filogenia , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Alinhamento de Sequência/veterinária
18.
Fish Shellfish Immunol ; 86: 794-804, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30557607

RESUMO

The grass carp reovirus (GCRV) has been shown to cause lethal infections in the grass carp Ctenopharyngodon idella (C. idella). In order to investigate the immune response to GCRV infection, the full-length cDNA sequences of coagulation factor VIII (CiFVIII) and plasminogen (CiPLG) from C. idella were cloned and their involvement in the immune response was studied. The immunity factor levels in C. idella with different GCRV resistances were also analyzed. The full-length 2478 bp cDNA of CiFVIII contained an open reading frame of 1965 bp and encoded a putative polypeptide of 654 amino acid residues. The full-length 2907 bp cDNA of CiPLG contained an open reading frame of 2133 bp and encoded a putative polypeptide of 710 amino acid residues. CiFVIII was closely clustered with that of Clupea harengus. CiPLG was first clustered with those of Cyprinus carpio and Danio rerio. CiFVIII transcripts were most abundant in the liver and least in the skin. The highest expression level of CiPLG was observed in liver and the lowest in muscle. Expression levels of CiFVIII in gill, head kidney and spleen, and expression levels of CiPLG in gill, intestine and liver all reached the maximum at 72 h post GCRV infection. In spleen, expression levels of CiFVIII and CiPLG were significantly positively correlated. The activities of T-AOC, LSZ and IgM in R♂ were significantly higher than those in O♂. Likewise, T-AOC and LSZ activities in F1 were significantly higher than f1 individuals (P < 0.01). These results indicated that CiFVIII and CiPLG may play important roles in the immune response to GCRV infection. In addition, antioxidant ability and serum immune factor activity may confer a different viral resistance to C. idella.


Assuntos
Carpas/genética , Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Fator VIII/química , Fator VIII/genética , Fator VIII/imunologia , Proteínas de Peixes/química , Perfilação da Expressão Gênica/veterinária , Filogenia , Plasminogênio/química , Plasminogênio/genética , Plasminogênio/imunologia , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia , Alinhamento de Sequência/veterinária
19.
Fish Shellfish Immunol ; 83: 292-307, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30218823

RESUMO

The barbel chub (Squaliobarbus curriculus) is a kind of small size commercial fish species that is widely spread in Asia and has shown significant resistance to disease. In this study, the full-length cDNA sequences of Toll-like receptor (TLR) 7 and 8 from S. curriculus, designated as ScTLR7 and ScTLR8, were cloned, and their differences in the structure and the responses to the grass carp (GCRV) infection and lipopolysaccharide stimulation were investigated. The full-length 3715 base pair (bp) cDNA of ScTLR7 contained a complete open reading frame of 3162 bp and encoded a putative polypeptide of 1053 amino acid residues. The full-length 4624 base pair (bp) cDNA of ScTLR8 contained a complete open reading frame of 3072 bp and encoded a putative polypeptide of 1023 amino acid residues. ScTLR7 and ScTLR8 consisted of N-terminal signal peptide, leucine-rich repeats (LRRs), and Toll/IL-1 Receptors domain. LRR motifs of ScTLR7 and ScTLR8 bend into horseshoe-like solenoid structure, while the number of LRRs between the two genes is different. Phylogenetic analysis showed that both the ScTLR7 and ScTLR8 were closely clustered with Ctenopharyngodon idellus and Megalobrama amblycephala. Quantitative real-time polymerase chain reaction analysis showed that the expression levels of ScTLR7 in S. curriculus were most abundant in the brain followed by the spleen and heart, and the lowest in the intestine. The highest expression level of ScTLR8 was observed in spleen and the lowest in the liver. After LPS stimulation, the relative expression levels of both ScTLR7 and ScTLR8 exhibited an overall trend of up-regulation. The expression levels of type I-IFN showed an overall trend of down-regulation at time points of 12, 24, 72 and 168 h compared to that of 6 h after LPS stimulation. Compared to 6 h post GCRV infection, the transcription level of ScTLR7 was up-regulated from 12 to 168 h, and transcription levels of ScTLR8, MyD88, and type I-IFN were firstly up-regulated from 12 to 72 h, and then down-regulated from 72 to 168 h. Correlation analysis showed that expression level of ScTLR7 in the spleen was significantly positively correlated with that of MyD88 (Pearson correlation coefficient: 0.909, P: 0.033), and a significantly positive correlation was also observed between expression levels of MyD88 and type I IFN (Pearson correlation coefficient: 0.962, P: 0.009), after GCRV stimulation. These results indicate that ScTLR7 and ScTLR8 may play important roles in the responses to the grass carp (GCRV) infection and lipopolysaccharide stimulation and trigger different downstream immune signal pathways.


Assuntos
Cyprinidae/imunologia , Proteínas de Peixes/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Animais , Cyprinidae/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Lipopolissacarídeos/farmacologia , Reoviridae , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética
20.
Fish Shellfish Immunol ; 69: 185-194, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28842371

RESUMO

The interferon regulatory factor 7 (IRF7) is a critical regulator of type-I interferon-dependent immune reaction that defense against virus. To investigate the antiviral function of IRF7 of barbel chub Squaliobarbus curriculus (ScIRF7), the cDNA of ScIRF7 was cloned and characterized. The full length cDNA of ScIRF7 was 1870 bp, consisted of 41 bp 5'-UTR, 560 bp 3'-UTR and a 1269 bp open reading frame (ORF). The ORF encoded 423 amino acids with a molecular weight of 49.426 KDa and a theoretical isoelectric point of 5.71. The putative ScIRF7 protein possesses typical domains of IRF family including a conserved N-terminal DBD-binding domain (DBD), a C-terminal IRF association domain and a serine-rich domain. In the DBD, four tryptophans were found to be highly conserved among all species, whilst in another conserved tryptophan site of mammals, the corresponding amino acids were methionine for fishes. The expression level of ScIRF7 was highest in the spleen and lowest in the liver. The expression level of IFN-ß was highest in the gill and lowest in the liver. After GCRV infection, expression levels changes of ScIRF7 showed an overall tendency of firstly up-regulation and then down-regulation in the spleen and the gill; and expression levels of ScIRF7 in peripheral blood lymphocyte at 24 h post-infection was highest among all time points. In pEGFP-ScIRF7 overexpressing cells, the mRNA level of ScIRF7 was firstly up-regulation and then down-regulation; and the expression of IFN-ß was significantly up-regulated at 12 h post-infection than that of control group (P < 0.05), which was significantly higher than those in pEGFP-N1 overexpressing cells. The results indicated that ScIRF7 may play a key role in immune responses of barbel chub Squaliobarbus curriculus against GCRV and may also functions in the Ctenopharyngodon idellus kidney cells.


Assuntos
Cyprinidae/genética , Cyprinidae/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Fator Regulador 7 de Interferon/química , Especificidade de Órgãos , Filogenia , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia , Alinhamento de Sequência/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA