Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Antonie Van Leeuwenhoek ; 116(1): 1-19, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36383329

RESUMO

The GTPase FtsZ forms the cell division scaffold in bacteria, which mediates the recruitment of the other components of the divisome. Streptomycetes undergo two different forms of cell division. Septa without detectable peptidoglycan divide the highly compartmentalised young hyphae during early vegetative growth, and cross-walls are formed that dissect the hyphae into long multinucleoid compartments in the substrate mycelium, while ladders of septa are formed in the aerial hyphae that lead to chains of uninucleoid spores. In a previous study, we analysed the phosphoproteome of Streptomyces coelicolor and showed that FtsZ is phosphorylated at Ser 317 and Ser389. Substituting Ser-Ser for either Glu-Glu (mimicking phosphorylation) or Ala-Ala (mimicking non-phosphorylation) hinted at changes in antibiotic production. Here we analyse development, colony morphology, spore resistance, and antibiotic production in FtsZ knockout mutants expressing FtsZ alleles mimicking Ser319 and Ser387 phosphorylation and non-phosphorylation: AA (no phosphorylation), AE, EA (mixed), and EE (double phosphorylation). The FtsZ-eGFP AE, EA and EE alleles were not able to form observable FtsZ-eGFP ladders when they were expressed in the S. coelicolor wild-type strain, whereas the AA allele could form apparently normal eGFP Z-ladders. The FtsZ mutant expressing the FtsZ EE or EA or AE alleles is able to sporulate indicating that the mutant alleles are able to form functional Z-rings leading to sporulation when the wild-type FtsZ gene is absent. The four mutants were pleiotropically affected in colony morphogenesis, antibiotic production, substrate mycelium differentiation and sporulation (sporulation timing and spore resistance) which may be an indirect result of the effect in sporulation Z-ladder formation. Each mutant showed a distinctive phenotype in antibiotic production, single colony morphology, and sporulation (sporulation timing and spore resistance) indicating that the different FtsZ phosphomimetic alleles led to different phenotypes. Taken together, our data provide evidence for a pleiotropic effect of FtsZ phosphorylation in colony morphology, antibiotic production, and sporulation.


Assuntos
Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/genética , Streptomyces/genética , Antibacterianos , Esporos Bacterianos/química , Parede Celular/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/análise
2.
Angew Chem Int Ed Engl ; 55(15): 4721-4, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26922900

RESUMO

We report the first X-ray structure of the unique "head-to-middle" monoterpene synthase, lavandulyl diphosphate synthase (LPPS). LPPS catalyzes the condensation of two molecules of dimethylallyl diphosphate (DMAPP) to form lavandulyl diphosphate, a precursor to the fragrance lavandulol. The structure is similar to that of the bacterial cis-prenyl synthase, undecaprenyl diphosphate synthase (UPPS), and contains an allylic site (S1) in which DMAPP ionizes and a second site (S2) which houses the DMAPP nucleophile. Both S-thiolo-dimethylallyl diphosphate and S-thiolo-isopentenyl diphosphate bind intact to S2, but are cleaved to (thio)diphosphate, in S1. His78 (Asn in UPPS) is essential for catalysis and is proposed to facilitate diphosphate release in S1, while the P1 phosphate in S2 abstracts a proton from the lavandulyl carbocation to form the LPP product. The results are of interest since they provide the first structure and structure-based mechanism of this unusual prenyl synthase.


Assuntos
Dimetilaliltranstransferase/metabolismo , Monoterpenos/metabolismo , Monoterpenos Acíclicos , Cristalografia por Raios X , Dimetilaliltranstransferase/química , Modelos Moleculares , Relação Estrutura-Atividade
3.
J Struct Biol ; 190(2): 135-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25791616

RESUMO

S-adenosylhomocysteine (SAH) hydrolase catalyzes the reversible hydrolysis of SAH into adenosine and homocysteine by using NAD(+) as a cofactor. The enzyme from Thermotoga maritima (tmSAHH) has great potentials in industrial applications because of its hyperthermophilic properties. Here, two crystal structures of tmSAHH in complex with NAD(+) show both open and closed conformations despite the absence of bound substrate. Each subunit of the tetrameric enzyme is composed of three domains, namely the catalytic domain, the NAD(+)-binding domain and the C-terminal domain. The NAD(+) binding mode is clearly observed and a substrate analogue can also be modeled into the active site, where two cysteine residues in mesophilic enzymes are replaced by serine and threonine in tmSAHH. Notably, the C-terminal domain of tmSAHH lacks the second loop region of mesophilic SAHH, which is important in NAD(+) binding, and thus exposes the bound cofactor to the solvent. The difference explains the higher NAD(+) requirement of tmSAHH because of the reduced affinity. Furthermore, the feature of missing loop is consistently observed in thermophilic bacterial and archaeal SAHHs, and may be related to their thermostability.


Assuntos
Adenosil-Homocisteinase/química , Modelos Moleculares , Thermotoga maritima/enzimologia , Adenosil-Homocisteinase/metabolismo , Cristalização , NAD/química , NAD/metabolismo , Ligação Proteica , Conformação Proteica , Difração de Raios X
4.
Nat Commun ; 15(1): 660, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253530

RESUMO

The molecular chaperone DnaK is essential for viability of Mycobacterium tuberculosis (Mtb). DnaK hydrolyzes ATP to fold substrates, and the resulting ADP is exchanged for ATP by the nucleotide exchange factor GrpE. It has been unclear how GrpE couples DnaK's nucleotide exchange with substrate release. Here we report a cryo-EM analysis of GrpE bound to an intact Mtb DnaK, revealing an asymmetric 1:2 DnaK-GrpE complex. The GrpE dimer ratchets to modulate both DnaK nucleotide-binding domain and the substrate-binding domain. We further show that the disordered GrpE N-terminus is critical for substrate release, and that the DnaK-GrpE interface is essential for protein folding activity both in vitro and in vivo. Therefore, the Mtb GrpE dimer allosterically regulates DnaK to concomitantly release ADP in the nucleotide-binding domain and substrate peptide in the substrate-binding domain.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Nucleotídeos , Polímeros , Trifosfato de Adenosina
5.
ACS Chem Biol ; 19(5): 1131-1141, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38668630

RESUMO

Angucyclines are an important group of microbial natural products that display tremendous chemical diversity. Classical angucyclines are composed of a tetracyclic benz[a]anthracene scaffold with one ring attached at an angular orientation. However, in atypical angucyclines, the polyaromatic aglycone is cleaved at A-, B-, or C-rings, leading to structural rearrangements and enabling further chemical variety. Here, we have elucidated the branching points in angucycline biosynthesis leading toward cleavage of the C-ring in lugdunomycin and thioangucycline biosynthesis. We showed that 12-hydroxylation and 6-ketoreduction of UWM6 are shared steps in classical and C-ring-cleaved angucycline pathways, although the bifunctional 6-ketoreductase LugOIIred harbors additional unique 1-ketoreductase activity. We identified formation of the key intermediate 8-O-methyltetrangomycin by the LugN methyltransferase as the branching point toward C-ring-cleaved angucyclines. The final common step in lugdunomycin and thioangucycline biosynthesis is quinone reduction, catalyzed by the 7-ketoreductases LugG and TacO, respectively. In turn, the committing step toward thioangucyclines is 12-ketoreduction catalyzed by TacA, for which no orthologous protein exists on the lugdunomycin pathway. Our results confirm that quinone reductions are early tailoring steps and, therefore, may be mechanistically important for subsequent C-ring cleavage. Finally, many of the tailoring enzymes harbored broad substrate promiscuity, which we utilized in combinatorial enzymatic syntheses to generate the angucyclines SM 196 A and hydranthomycin. We propose that enzyme promiscuity and the competition of many of the enzymes for the same substrates lead to a branching biosynthetic network and formation of numerous shunt products typical for angucyclines rather than a canonical linear metabolic pathway.


Assuntos
Streptomyces , Streptomyces/metabolismo , Antraquinonas/metabolismo , Antraquinonas/química , Produtos Biológicos/metabolismo , Produtos Biológicos/química , Hidroxilação , Anguciclinas e Anguciclinonas
6.
Commun Chem ; 6(1): 281, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110491

RESUMO

Angucyclines are type II polyketide natural products, often characterized by unusual structural rearrangements through B- or C-ring cleavage of their tetracyclic backbone. While the enzymes involved in B-ring cleavage have been extensively studied, little is known of the enzymes leading to C-ring cleavage. Here, we unravel the function of the oxygenases involved in the biosynthesis of lugdunomycin, a highly rearranged C-ring cleaved angucycline derivative. Targeted deletion of the oxygenase genes, in combination with molecular networking and structural elucidation, showed that LugOI is essential for C12 oxidation and maintaining a keto group at C6 that is reduced by LugOII, resulting in a key intermediate towards C-ring cleavage. An epoxide group is then inserted by LugOIII, and stabilized by the novel enzyme LugOV for the subsequent cleavage. Thus, for the first time we describe the oxidative enzymatic steps that form the basis for a wide range of rearranged angucycline natural products.

7.
mSphere ; 7(5): e0027422, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35993699

RESUMO

Mycobacterium tuberculosis possesses a Pup-proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. We have previously shown that the hexameric mycobacterial proteasome ATPase (Mpa) recruits pupylated protein substrates via interactions between amino-terminal coiled-coils in Mpa monomers and the degradation tag Pup. However, it is unclear how Mpa rings interact with a proteasome due to the presence of a carboxyl-terminal ß-grasp domain unique to Mpa homologues that makes the interaction highly unstable. Here, we describe newly identified critical interactions between Mpa and 20S core proteasomes. Interestingly, the Mpa C-terminal GQYL motif binds the 20S core particle activation pocket differently than the same motif of the ATP-independent proteasome accessory factor PafE. We further found that the ß-hairpin of the Mpa ß-grasp domain interacts variably with the H0 helix on top of the 20S core particle via a series of ionic and hydrogen-bond interactions. Individually mutating several involved residues reduced Mpa-mediated protein degradation both in vitro and in vivo. IMPORTANCE The Pup-proteasome system in Mycobacterium tuberculosis is critical for this species to cause lethal infections in mice. Investigating the molecular mechanism of how the Mpa ATPase recruits and unfolds pupylated substrates to the 20S proteasomal core particle for degradation will be essential to fully understand how degradation is regulated, and the structural information we report may be useful for the development of new tuberculosis chemotherapies.


Assuntos
Mycobacterium tuberculosis , Animais , Camundongos , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Hidrogênio/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinas/genética , Ubiquitinas/química , Ubiquitinas/metabolismo
8.
Open Biol ; 11(2): 200409, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33622102

RESUMO

In most bacteria, cell division begins with the polymerization of the GTPase FtsZ at mid-cell, which recruits the division machinery to initiate cell constriction. In the filamentous bacterium Streptomyces, cell division is positively controlled by SsgB, which recruits FtsZ to the future septum sites and promotes Z-ring formation. Here, we show that various amino acid (aa) substitutions in the highly conserved SsgB protein result in ectopically placed septa that sever spores diagonally or along the long axis, perpendicular to the division plane. Fluorescence microscopy revealed that between 3.3% and 9.8% of the spores of strains expressing SsgB E120 variants were severed ectopically. Biochemical analysis of SsgB variant E120G revealed that its interaction with FtsZ had been maintained. The crystal structure of Streptomyces coelicolor SsgB was resolved and the key residues were mapped on the structure. Notably, residue substitutions (V115G, G118V, E120G) that are associated with septum misplacement localize in the α2-α3 loop region that links the final helix and the rest of the protein. Structural analyses and molecular simulation revealed that these residues are essential for maintaining the proper angle of helix α3. Our data suggest that besides altering FtsZ, aa substitutions in the FtsZ-recruiting protein SsgB also lead to diagonally or longitudinally divided cells in Streptomyces.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular , Streptomyces/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas do Citoesqueleto/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Streptomyces/genética , Streptomyces/fisiologia
9.
ACS Chem Biol ; 15(9): 2529-2538, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32840360

RESUMO

Angucyclines are a structurally diverse class of actinobacterial natural products defined by their varied polycyclic ring systems, which display a wide range of biological activities. We recently discovered lugdunomycin (1), a highly rearranged polyketide antibiotic derived from the angucycline backbone that is synthesized via several yet unexplained enzymatic reactions. Here, we show via in vivo, in vitro, and structural analysis that the promiscuous reductase LugOII catalyzes both a C6 and an unprecedented C1 ketoreduction. This then sets the stage for the subsequent C-ring cleavage that is key to the rearranged scaffolds of 1. The 1.1 Å structures of LugOII in complex with either ligand 8-O-Methylrabelomycin (4) or 8-O-Methyltetrangomycin (5) and of apoenzyme were resolved, which revealed a canonical Rossman fold and a remarkable conformational change during substrate capture and release. Mutational analysis uncovered key residues for substrate access, position, and catalysis as well as specific determinants that control its dual functionality. The insights obtained in this work hold promise for the discovery and engineering of other promiscuous reductases that may be harnessed for the generation of novel biocatalysts for chemoenzymatic applications.


Assuntos
Oxirredutases do Álcool/metabolismo , Antibacterianos/metabolismo , Policetídeos/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico/genética , Cristalografia por Raios X , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Policetídeos/química , Ligação Proteica , Streptomyces/enzimologia , Especificidade por Substrato
10.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 212-216, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950820

RESUMO

Decaprenyl diphosphate synthase from Mycobacterium tuberculosis (MtDPPS, also known as Rv2361c) catalyzes the consecutive elongation of ω,E,Z-farnesyl diphosphate (EZ-FPP) by seven isoprene units by forming new cis double bonds. The protein folds into a butterfly-like homodimer like most other cis-type prenyltransferases. The starting allylic substrate EZ-FPP is bound to the S1 site and the homoallylic substrate to be incorporated, isopentenyl diphosphate, is bound to the S2 site. Here, a 1.55 Šresolution structure of MtDPPS in complex with the substrate analogues geranyl S-thiodiphosphate (GSPP) and isopentenyl S-thiodiphosphate bound to their respective sites in one subunit clearly shows the active-site configuration and the magnesium-coordinated geometry for catalysis. The ligand-binding mode of GSPP in the other subunit indicates a possible pathway of product translocation from the S2 site to the S1 site, as required for the next step of the reaction. The preferred binding of negatively charged effectors to the S1 site also suggests a promising direction for inhibitor design.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Mycobacterium tuberculosis/enzimologia , Modelos Moleculares , Especificidade por Substrato
11.
Enzyme Microb Technol ; 99: 32-37, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28193329

RESUMO

1,4-ß-Endoglucanase is one of the most important biocatalysts in modern industries. Here, a glycoside hydrolase (GH) family 45 endoglucanase from thermophilic fungus Theilavia terrestris (TtCel45A) was expressed in Pichia pastoris. The recombinant protein shows optimal activity at 60°C, pH 4-5. The enzyme exhibits extraordinary thermostability that more than 80% activity was detected after heating at 80°C for 2.5h. The high resolution crystal structures of apo-form enzyme and that in complex with cellobiose and cellotetraose were solved to 1.36-1.58Å. The protein folds into two overall regions: one is a six-stranded ß-barrel, and the other one consists of several extended loops. Between the two regions lies the substrate-binding channel, which is an open cleft spanning across the protein surface. A continuous substrate-binding cleft from subsite -4 to +3 were clearly identified in the complex structures. Notably, the flexible V-VI loop (113Gly-114Gly-115Asp-116Leu-117Gly-118Ser) is found to open in the presence of -1 sugar, with D115 and L116 swung away to yield a space to accommodate the catalytic acid D122 and the 2,5B boat conformation of -1 sugar during transition state. Collectively, we characterized the enzyme properties of P. pastoris-expressed TtCel45A and solved high-resolution crystal structures of the enzyme. These results are of great interests in industrial applications and provide new insights into the fundamental understanding of enzyme catalytic mechanism of GH45 endoglucanases.


Assuntos
Celulase/química , Celulase/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Sordariales/enzimologia , Domínio Catalítico , Celulase/genética , Cristalografia por Raios X , Estabilidade Enzimática , Proteínas Fúngicas/genética , Temperatura Alta , Microbiologia Industrial , Modelos Moleculares , Pichia/enzimologia , Pichia/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sordariales/genética , Eletricidade Estática
12.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 11): 1563-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25372832

RESUMO

S-Adenosylhomocysteine hydrolase (SAHH) catalyzes the reversible conversion of S-adenosylhomocysteine into adenosine and homocysteine. The SAHH from Thermotoga maritima (TmSAHH) was expressed in Escherichia coli and the recombinant protein was purified and crystallized. TmSAHH crystals belonging to space group C2, with unit-cell parameters a=106.3, b=112.0, c=164.9 Å, ß=103.5°, were obtained by the sitting-drop vapour-diffusion method and diffracted to 2.85 Šresolution. Initial phase determination by molecular replacement clearly indicated that the crystal contains one homotetramer per asymmetric unit. Further refinement of the crystal structure is in progress.


Assuntos
Adenosil-Homocisteinase/química , Proteínas de Bactérias/química , Thermotoga maritima/enzimologia , Adenosil-Homocisteinase/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Cristalização , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA