Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chin Med Sci J ; 39(2): 102-110, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38755752

RESUMO

Objective To investigate the efficacy of raw corn starch (RCS) in clinical management of insulinoma-induced hypoglycemia. Methods We retrospectively collected clinical data of insulinoma patients who received RCS-supplemented diet preoperatively, and analyzed the therapeutic effects of the RCS intervention on blood glucose control, weight change, and its adverse events. Results The study population consisted of 24 cases of insulinoma patients, 7 males and 17 females, aged 46.08±14.15 years. Before RCS-supplemented diet, all patients had frequent hypoglycemic episodes (2.51±3.88 times/week), concurrent with neuroglycopenia (in 83.3% of patients) and autonomic manifestations (in 75.0% of patients), with the median fasting blood glucose (FBG) of 2.70 (interquartile range [IQR]: 2.50-2.90) mmol/L. The patients' weight increased by 0.38 (IQR: 0.05-0.65) kg per month, with 8 (33.3%) cases developing overweight and 7 (29.2%) cases developing obesity. All patients maintained the RCS-supplemented diet until they underwent tumor resection (23 cases) and transarterial chemoembolization for liver metastases (1 case). For 19 patients receiving RCS throughout the day, the median FBG within one week of nutritional management was 4.30 (IQR: 3.30-5.70) mmol/L, which was a significant increase compared to pre-nutritional level [2.25 (IQR: 1.60-2.90) mmol/L; P < 0.001]. Of them, 10 patients receiving RCS throughout the day for over four weeks had sustained improvement in FBG compared to pre-treatment [3.20 (IQR: 2.60-3.95) mmol/L vs. 2.15 (IQR: 1.83-2.33) mmol/L; P < 0.001). Five patients who received RCS only at night also had a significant increase in FBG within one week of nutritional management [3.50 (IQR: 2.50-3.65) mmol/L vs. 2.20 (IQR:1.80-2.60) mmol/L; P < 0.001], but only one patient who continued to receive RCS for over four weeks did not have a significant improvement in FBG. No improvement in weight gain was observed upon RCS supplementation. Mild diarrhea (2 cases) and flatulence (1 case) occurred, and were relieved by reduction of RCS dose. Conclusion The RCS-supplemented diet is effective in controlling insulinoma-induced hypoglycemia.


Assuntos
Hipoglicemia , Insulinoma , Amido , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Insulinoma/complicações , Insulinoma/terapia , Adulto , Amido/uso terapêutico , Estudos Retrospectivos , Glicemia/metabolismo , Neoplasias Pancreáticas/complicações , Idoso
2.
Horm Metab Res ; 55(9): 634-641, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37380030

RESUMO

Hyperinsulinemia and insulin resistance in T2D have a potent suppressive effect on hepatic autophagy, however, the underlying mechanisms remain unclear. To explore the effect of insulin on hepatic autophagy and its possible signaling pathways, HL-7702 cells were treated with insulin with or without insulin signaling inhibitors. The interaction between insulin and the promoter region of GABARAPL1 was assessed through luciferase assay and EMSA. There were significant dose-dependent decreases in the number of intracellular autophagosomes and the protein levels of GABARAPL1 and beclin1 in insulin-treated HL-7702 cells. Insulin signaling inhibitors reversed the inhibitory effect of insulin on rapamycin-induced autophagy and autophagy-related gene upregulation. Insulin blocks the binding of FoxO1 to putative insulin response elements in GABARAPL1 gene promoter, leading to the repressed transcription of GABARAPL1 gene and the suppression of hepatic autophagy. Our study identified GABARAPL1 as a novel target of insulin in suppressing hepatic autophagy.


Assuntos
Insulina , Proteínas Associadas aos Microtúbulos , Insulina/farmacologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Transdução de Sinais/genética , Autofagia/genética , Regiões Promotoras Genéticas/genética
3.
Acta Pharmacol Sin ; 42(4): 604-612, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32694757

RESUMO

The kinase FLT3 internal tandem duplication (FLT3-ITD) is related to poor clinical outcomes of acute myeloid leukemia (AML). FLT3 inhibitors have provided novel strategies for the treatment of FLT3-ITD-positive AML. But they are limited by rapid development of acquired resistance and refractory in monotherapy. Recent evidence shows that inducing the degradation of FLT3-mutated protein is an attractive strategy for the treatment of FLT3-ITD-positive AML, especially those with FLT3 inhibitor resistance. In this study we identified Wu-5 as a novel USP10 inhibitor inducing the degradation of FLT3-mutated protein. We showed that Wu-5 selectively inhibited the viability of FLT3 inhibitor-sensitive (MV4-11, Molm13) and -resistant (MV4-11R) FLT3-ITD-positive AML cells with IC50 of 3.794, 5.056, and 8.386 µM, respectively. Wu-5 (1-10 µM) dose-dependently induced apoptosis of MV4-11, Molm13, and MV4-11R cells through the proteasome-mediated degradation of FLT3-ITD. We further demonstrated that Wu-5 directly interacted with and inactivated USP10, the deubiquitinase for FLT3-ITD in vitro (IC50 value = 8.3 µM) and in FLT3-ITD-positive AML cells. Overexpression of USP10 abrogated Wu-5-induced FLT3-ITD degradation and cell death. Also, the combined treatment of Wu-5 and crenolanib produced synergistic cell death in FLT3-ITD-positive cells via the reduction of both FLT3 and AMPKα proteins. In support of this, AMPKα inhibitor compound C synergistically enhanced the anti-leukemia effect of crenolanib, while AMPKα activator metformin inhibited the anti-leukemia effect of crenolanib. In summary, we demonstrate that Wu-5, a novel USP10 inhibitor, can overcome FLT3 inhibitor resistance and synergistically enhance the anti-AML effect of crenolanib through targeting FLT3 and AMPKα pathway.


Assuntos
Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia , Ubiquitina Tiolesterase/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Piperidinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/metabolismo
4.
Diabetes Metab Res Rev ; 35(5): e3148, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30838734

RESUMO

Excessive adiposity and metabolic inflammation are the key risk factors of type 2 diabetes mellitus (T2DM). Juxtaposed with another zinc finger gene 1 (JAZF1) has been identified as a novel transcriptional cofactor, with function of regulating glucose and lipid homeostasis and inflammation. JAZF1 is involved in metabolic process of T2DM via interaction with several nuclear receptors and protein kinases. Additionally, increasing evidence from genome-wide association studies (GWAS) has shown that JAZF1 polymorphisms are closely associated with T2DM. In this review, we have updated the latest research advances on JAZF1 and discussed its regulatory network in T2DM. The association between JAZF1 polymorphisms and T2DM is discussed as well. The information provided is of importance for guiding future studies as well as for the design of JAZF1-based T2DM therapy.


Assuntos
Proteínas Correpressoras/fisiologia , Proteínas de Ligação a DNA/fisiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Animais , Glicemia/metabolismo , Metabolismo dos Carboidratos/genética , Estudo de Associação Genômica Ampla , Humanos , Metabolismo dos Lipídeos/genética , Polimorfismo Genético , Fatores de Risco
5.
BMC Endocr Disord ; 19(1): 12, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670019

RESUMO

BACKGROUND: Zinc-α2-glycoprotein (ZAG) is a recently novel lipolytic adipokine implicated in regulation of glucose and lipid metabolism in many metabolic disorders. In vitro and animal studies suggest that thyroid hormones (TH) up-regulates ZAG production in hepatocytes. However, there is no data evaluating the possible relationship between ZAG and TH in a human model of hyperthyroidism. The objective of the present study is to assess the association of serum ZAG levels with TH and lipid profile in patients with hyperthyroidism before and after methimazole treatment. METHODS: A total of 120 newly diagnosed overt hyperthyroidism and 122 healthy control subjects were recruited. Of them, 39 hyperthyroidism patients were assigned to receive methimazole treatment as follow-up study for 2 months. RESULTS: The clinical consequence showed that serum ZAG levels were elevated in patients with hyperthyroidism (P < 0.01). Adjust for age, gender and BMI, serum ZAG levels were positively related with serum free T3 (FT3), free T4 (FT4) levels and negatively correlated with serum total cholesterol (TC), low density lipoprotein cholesterol (LDLC) levels in hyperthyroidism subjects (all P < 0.01). After methimazole treatment, serum ZAG levels were decreased and the decline was associated with decreased FT3, FT4 and increased TC levels (all P < 0.001). CONCLUSION: We conclude that ZAG may be involved in the pathogenesis of lipid metabolism disorder in patients with hyperthyroidism. TRIAL REGISTRATION: ChiCTR-ROC-17012943 . Registered 11 October 2017, retrospectively registered.


Assuntos
Biomarcadores/sangue , Hipertireoidismo/sangue , Metimazol/uso terapêutico , Proteínas de Plasma Seminal/sangue , Hormônios Tireóideos/sangue , Adulto , Antitireóideos/uso terapêutico , Feminino , Seguimentos , Humanos , Hipertireoidismo/diagnóstico , Hipertireoidismo/tratamento farmacológico , Masculino , Prognóstico , Estudos Prospectivos , Glicoproteína Zn-alfa-2
6.
Biochem Biophys Res Commun ; 496(2): 287-293, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29317208

RESUMO

Recent studies have highlighted recruiting and activating brite adipocytes in WAT (so-called "browning") would be an attractive anti-obesity strategy. Zinc alpha2 glycoprotein (ZAG) as an important adipokine, is reported to ameliorate glycolipid metabolism and lose body weight in obese mice. However whether the body reducing effect mediated by browning programme remains unclear. Here, we show that overexpression of ZAG in 3T3-L1 adipocytes enhanced expression of brown fat-specific markers (UCP-1, PRDM16 and CIDEA), mitochondrial biogenesis genes (PGC-1α, NRF-1/2 and mtTFA) and the key lipid metabolism lipases (ATGL, HSL, CPT1-A and p-acyl-CoA carboxylase). Additionally, those effects were dramaticlly abolished by H89/SB203580, revealing ZAG-induced browning depend on PKA and p38 MAPK signaling. Overall, our findings suggest that ZAG is a candidate therapeutic agent against obesity via induction of brown fat-like phenotype in white adipocytes.


Assuntos
Adipócitos Marrons/metabolismo , Proteínas de Transporte/genética , Regulação da Expressão Gênica , Glicoproteínas/genética , Metabolismo dos Lipídeos/genética , Células 3T3-L1 , Adipócitos Marrons/citologia , Adipócitos Marrons/efeitos dos fármacos , Adipocinas , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Carbono-Carbono Ligases/genética , Carbono-Carbono Ligases/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glicoproteínas/metabolismo , Imidazóis/farmacologia , Isoquinolinas/farmacologia , Lipase/genética , Lipase/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Piridinas/farmacologia , Transdução de Sinais , Sulfonamidas/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
7.
Int J Obes (Lond) ; 42(8): 1418-1430, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30006580

RESUMO

BACKGROUND/AIM: Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, impaired insulin sensitivity, and chronic low-grade inflammation. Our previous studies indicated that zinc alpha2 glycoprotein (ZAG) alleviates palmitate (PA)-induced intracellular lipid accumulation in hepatocytes. This study is to further characterize the roles of ZAG on the development of hepatic steatosis, insulin resistance (IR), and inflammation. METHODS: ZAG protein levels in the livers of NAFLD patients, high-fat diet (HFD)-induced or genetically (ob/ob) induced obese mice, and in PA-treated hepatocytes were determined by western blotting. C57BL/6J mice injected with an adenovirus expressing ZAG were fed HFD for indicated time to induce hepatic steatosis, IR, and inflammation, and then biomedical, histological, and metabolic analyses were conducted to identify pathologic alterations in these mice. The molecular mechanisms underlying ZAG-regulated hepatic steatosis were further explored and verified in mice and hepatocytes. RESULTS: ZAG expression was decreased in NAFLD patient liver biopsy samples, obese mice livers, and PA-treated hepatocytes. Simultaneously, ZAG overexpression alleviated intracellular lipid accumulation via upregulating adiponectin and lipolytic genes (FXR, PPARα, etc.) while downregulating lipogenic genes (SREBP-1c, LXR, etc.) in obese mice as well as in cultured hepatocytes. ZAG improved insulin sensitivity and glucose tolerance via activation of IRS/AKT signaling. Moreover, ZAG significantly inhibited NF-ĸB/JNK signaling and thus resulting in suppression of obesity-associated inflammatory response in hepatocytes. CONCLUSIONS: Our results revealed that ZAG could protect against NAFLD by ameliorating hepatic steatosis, IR, and inflammation.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Proteínas de Plasma Seminal/metabolismo , Animais , Humanos , Fígado/química , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas de Plasma Seminal/análise , Proteínas de Plasma Seminal/genética , Transdução de Sinais/genética , Regulação para Cima/genética , Glicoproteína Zn-alfa-2
9.
Biomed Environ Sci ; 30(9): 667-670, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29081341

RESUMO

The study illustrate the inner correlation between global DNA methylation variation and different birth weights. Infant birth weight was used to identify cases and controls. Cord blood and placentas were collected. We performed DNA methylation profiling of bisulphite-converted DNA. We have identified many differentially methylated CpG sites in experimental groups; these sites involved in hundreds of signalings. Among these, more than ten pathways were referred to the glucose and lipid metabolism. Methylation changes in the insulin-signaling pathway (ISP), adipocytokine signaling pathway (ASP) and MAPK signaling pathway are involved in the fetal programming of diabetes..


Assuntos
Peso ao Nascer , Metilação de DNA , Estudo de Associação Genômica Ampla , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Recém-Nascido , Masculino , Tamanho do Órgão , Placenta/anatomia & histologia , Gravidez , Transdução de Sinais
10.
Yi Chuan ; 37(1): 70-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25608816

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptor proteins that regulate gene transcription. PPARs play essential roles in modulating cell differentiation, development, and metabolism (carbohydrate, lipid, protein). Here, we investigated whether PPARγ plays a role in linking maternal malnutrition and aberrant metabolism in the offspring of mice. After feeding dams with high fat (HF) and low protein (LP) diet during pregnancy and lactation, we examined the effects on the offspring at weaning (age of 3-week). The results showed that the LP offspring had lower body weight and length than the control. The HF offspring had heavier body weight and longer body length than LP. The blood glucose levels in HF group were significantly higher at 30 min and 60 min after intraperitoneal glucose administration and the area under curve was also significantly larger than the control. The blood glucose levels in HF group were significantly higher at 30 min than LP. HF group had elevated total cholesterol levels and LP group had decreased total cholesterol levels compared with the control. All results were statistically significant as examined by t-test. More importantly, PPARγ expression levels detected by qRT-PCR were significantly increased in HF and LP groups compared with the control. In conclusion, maternal HF and LP diet during pregnancy and lactation can induce impaired glucose and lipid metabolism in the early life of mouse offspring, where PPARγ may play an important role.


Assuntos
Glucose/metabolismo , Metabolismo dos Lipídeos , Desnutrição/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , PPAR gama/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ração Animal/análise , Animais , Feminino , Humanos , Masculino , Desnutrição/genética , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA