Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 540, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822238

RESUMO

The citral-type is the most common chemotype in Cinnamomum bodinieri Levl (C. bodinieri), which has been widely used in the daily necessities, cosmetics, biomedicine, and aromatic areas due to their high citral content. Despite of this economic prospect, the possible gene-regulatory roles of citral biosynthesis in the same geographic environment remains unknown. In this study, the essential oils (EOs) of three citral type (B1, B2, B3) and one non-citral type (B0) varieties of C. bodinieri were identified by GC-MS after hydrodistillation extraction in July. 43 components more than 0.10% were identified in the EOs, mainly composed of monoterpenes (75.8-91.84%), and high content citral (80.63-86.33%) were identified in citral-type. Combined transcriptome and metabolite profiling analysis, plant-pathogen interaction(ko04626), MAPK signaling pathway-plant(ko04016), starch and sucrose metabolism(ko00500), plant hormone signal transduction(ko04075), terpenoid backbone biosynthesis (ko00900) and monoterpenoid biosynthesis (ko00902) pathways were enriched significantly. The gene expression of differential genes were linked to the monoterpene content, and the geraniol synthase (CbGES), alcohol dehydrogenase (CbADH), geraniol 8-hydroxylase-like (CbCYP76B6-like) and 8-hydroxygeraniol dehydrogenase (Cb10HGO) were upregulated in the citral-type, indicating that they were associated with high content of geraniol and citral. The activities of CbGES and CbADH in citral type were higher than in non-citral type, which was corroborated by enzyme-linked immunosorbent assay (ELISA). This study on the accumulation mechanism of citral provides a theoretical basis for the development of essential oil of C. bodinieri.


Assuntos
Monoterpenos Acíclicos , Cinnamomum , Perfilação da Expressão Gênica , Monoterpenos , Cinnamomum/metabolismo , Cinnamomum/genética , Monoterpenos Acíclicos/metabolismo , Monoterpenos/metabolismo , Transcriptoma , Óleos Voláteis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas
2.
Molecules ; 27(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364183

RESUMO

Citral chemotypes Cinnamomum camphora (C. camphora) and Cinnamomum bodinieri (C. bodinieri) are promising industrial plants that contain abundant citral. For a more in-depth study, their significant biological effect, the chemical composition and antioxidant capacity of essential oils of citral-rich chemotype C. camphora and C. bodinieri (EOCC) were determined in the present study. The EOCC yield, obtained by hydro-distillation and analyzed by gas chromatography-mass spectrometry (GC-MS), ranged from 1.45-2.64%. Forty components more than 0.1% were identified and represented, mainly by a high content of neral (28.6-39.2%), geranial (31.8-54.1%), Z-isocitral (1.8-3.2%), E-isocitral (3.2-4.7%), geraniol (1.3-2.6%) and caryophyllene (0.6-2.4%). The antioxidant properties of EOCC were estimated by DPPH, ABTS and FRAP methods. As our results indicated, the antioxidant activity was significantly correlated to oxygenated monoterpenes. The variety of C. bodinieri (N7) presented the best antioxidant profile, given its highest inhibition of DPPH radical (IC50 = 6.887 ± 0.151 mg/mL) and ABTS radical scavenging activity (IC50 = 19.08 ± 0.02 mg/mL). To the best of our knowledge, more than 88% citral of C. bodinieri was investigated and the antioxidant properties described for the first time. Considering high essential oil yield, rich citral content and high antioxidant activity, the N7 variety will be a good candidate for pharmaceutical and cosmetic development of an improved variety.


Assuntos
Cinnamomum camphora , Cinnamomum , Óleos Voláteis , Cinnamomum camphora/química , Óleos Voláteis/química , Antioxidantes/farmacologia
3.
Sci Total Environ ; 930: 172550, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643872

RESUMO

Urban green spaces provide multiple ecosystem services and have great influences on human health. However, the compositions and properties of urban soil are not well understood yet. In this study, soil samples were collected from 45 parks in Ningbo to investigate the relationships among soil physicochemical properties, heavy metals and bacterial communities. The results showed that soil dissolved organic matter (DOM) was of high molecular weight, high aromaticity, and low degree of humification. The contents of heavy metals were all below the China's national standard safety limit (GB 3660-2018). The bioavailability of heavy metals highly correlated with soil pH, the content of DOC, the fluorescent component, the degree of humification and the source of DOM. The most abundant genera were Gemmatimonadaceae_uncultured, Xanthobacteraceae_uncultured, and Acidothermus in all samples, which were related to nitrogen cycle and bioavailability of heavy metals. Soil pH, bioavailability of Zn, Cd, and Pb (CaCl2 extracted) were the main edaphic factors influencing bacterial community composition. It should be noted that there was no significant impact of urbanization on soil physicochemical properties and bacterial composition, but they were determined by the source of soil in urban green spaces. However, with the passage of time, the effect of urbanization on urban green spaces cannot be ignored. Overall, this study provided new insight for understanding the linkage among soil physicochemical properties, heavy metals, and bacterial communities in urban green spaces.


Assuntos
Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Solo , Urbanização , Solo/química , China , Metais Pesados/análise , Poluentes do Solo/análise , Monitoramento Ambiental , Bactérias
4.
J Hazard Mater ; 465: 133149, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056267

RESUMO

The microbiome in the air-phyllosphere-soil continuum of urban greenspaces plays a crucial role in re-connecting urban populations with biodiverse environmental microbiomes. However, little is known about whether plant type affects the airborne microbiomes, as well as the extent to which soil and phyllosphere microbiomes contribute to airborne microbiomes. Here we collected soil, phyllosphere and airborne microbes with different plant types (broadleaf tree, conifer tree, and grass) in urban parks. Despite the significant impacts of plant type on soil and phyllosphere microbiomes, plant type had no obvious effects on the diversity of airborne microbes but shaped airborne bacterial composition in urban greenspaces. Soil and phyllosphere microbiomes had a higher contribution to airborne bacteria in broadleaf trees (37.56%) compared to conifer trees (9.51%) and grasses (14.29%). Grass areas in urban greenspaces exhibited a greater proportion of potential pathogens compared to the tree areas. The abundance of bacterial pathogens in phyllosphere was significantly higher in grasses compared to broadleaf and conifer trees. Together, our study provides novel insights into the microbiome patterns in air-phyllosphere-soil continuum, highlighting the potential significance of reducing the proportion of extensively human-intervened grass areas in future urban environment designs to enhance the provision of ecosystem services in urban greenspaces.


Assuntos
Microbiota , Solo , Humanos , Parques Recreativos , Plantas , Árvores/microbiologia , Bactérias , Poaceae
5.
Sci Total Environ ; 900: 165810, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37499813

RESUMO

The potential risk of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) to soil organisms remains poorly understood. Here we showed that 6PPD-Q pollution inhibited the survival of collembolans (Folsomia candida) with the chronic median lethal concentration (LC50) of 16.31 µg kg-1 in a 28-day soil culture. The microbe-microbe interactions between abundant taxa in soil and collembolan gut helped alleviate the negative impact of 6PPD-Q on soil microbial community, while rare taxa contributed to maintaining microbial network complexity and stability under 6PPD-Q stresses. Gammaproteobacteria, Alphaproteobacteria and Actinobacteria in the gut of both adult and juvenile collembolans were identified as potential indicators for 6PPD-Q exposure. Such responses were accompanied by increases in the relative abundances of genes involved in nutrient cycles and their interactions between soil and collembolan gut microbiomes, which enhanced nitrogen and carbon turnover in 6PPD-Q polluted soil, potentially alleviating the stresses caused by 6PPD-Q. Overall, this study sheds new light on the toxicity of 6PPD-Q to soil organisms and links 6PPD-Q stresses to microbial responses and soil functions, thus highlighting the urgency of assessing its potential risk to the terrestrial ecosystem.


Assuntos
Artrópodes , Benzoquinonas , Microbioma Gastrointestinal , Consórcios Microbianos , Fenilenodiaminas , Microbiologia do Solo , Poluentes do Solo , Animais , Artrópodes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Consórcios Microbianos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Dose Letal Mediana , Fenilenodiaminas/toxicidade , Benzoquinonas/toxicidade
6.
Environ Pollut ; 319: 120900, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36581242

RESUMO

Organic fertilization is a major contributor to the spread of antibiotic resistance genes (ARGs) in the agroecosystem, which substantially increases the risk of ARGs acquisition and their transmission into human food chains. Earthworms are among the most vital soil faunas involved in the link between belowground and aboveground, and silicon is beneficial for soil health and plant stress resistance. This study aims to explore the effect of different amendment strategies (earthworm and/or silicon) and the related influencing factors on the alleviation of ARGs using high-throughput qPCR. The results showed that the application of earthworms and silicon fertilizers reduced the absolute abundance of ARGs in the rhizosphere soils, either singly or in combination. According to the structural equation model and random forest analysis, mobile genetic elements are the major factors enhancing ARGs transfers and the treatment affects ARGs in direct or indirect ways. Our results highlight the role of "rhizosphere effect" in alleviating antibiotic resistance and suggest that silicon fertilizers, together with the earthworms, can be considered as a sustainable and natural solution to mitigate high-risk ARGs spread in the soil-plant systems. Our findings provide guidance in formulating strategies for halting the spread of ARGs in the agroecosystem.


Assuntos
Brassica , Oligoquetos , Animais , Humanos , Antibacterianos/farmacologia , Genes Bacterianos , Silício/farmacologia , Solo/química , Fertilizantes/análise , Esterco/análise , Resistência Microbiana a Medicamentos/genética , Microbiologia do Solo
7.
Front Microbiol ; 14: 1104077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819046

RESUMO

Cinnamomum camphora (C. camphora) is a broad-leaved evergreen tree cultivated in subtropical China. Currently, the use of C. camphora clonal cuttings for coppice management has become popular. However, the effects of C. camphora coppice planting on soil abiotic and biotic variances remained unclear. In this study, we collected soil from three points in the seven-year C. camphora coppice planting land: under the tree canopy (P15), between trees (P50), and abandoned land (Control) to investigate the effects of C. camphora coppice planting on soil fertility, microbial community structure and enzyme activity. The results revealed that C. camphora coppice planting significantly increased soil fertility in the point under the tree canopy (P15) and point between trees (P50), and P15 had more significant effects than P50. Meanwhile, in P15 and P50, soil bacterial, fungal alpha-diversity were improved and microbial community structures were also changed. And the changes of soil organic carbon and total nitrogen promote the transformation of soil bacterial, fungal community structures, respectively. In addition, C. camphora coppice planting significantly (p < 0.05) increased soil urease (UE), polyphenol oxidase, and peroxidase activities, while significantly decreased soil ACP activity. This study demonstrated that the C. camphora coppice planting could improve soil fertility in subtropical China, which promoted the transformation of soil microbial community from oligotrophs (K-strategist) to copiotrophs (r-strategist). Thus, this work can provide a theoretical basis for soil nutrient variation and productive management of C. camphora coppice plantation in subtropical China.

8.
Sci Total Environ ; 896: 165226, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37392888

RESUMO

Arsenic and cadmium in rice grain are of growing concern in the global food supply chain. Paradoxically, the two elements have contrasting behaviors in soils, making it difficult to develop a strategy that can concurrently reduce their uptake and accumulation by rice plant. This study examined the combined impacts of watering (irrigation) schemes, different fertilizers and microbial populations on the bioaccumulation of arsenic and cadmium by rice as well as on rice grain yield. Compared to drain-flood and flood-drain treatments, continuously flooded condition significantly reduced the accumulation of cadmium in rice plant but the level of arsenic in rice grain remained above 0.2 mg/kg, which exceeded the China national food safety standard. Application of different fertilizers under continuously flooded condition showed that compared to inorganic fertilizer and biochar, manure addition effectively reduced the accumulation of arsenic over three to four times in rice grain and both elements were below the food safety standard (0.2 mg/kg) while significantly increasing the rice yield. Soil Eh was the critical factor in the bioavailability of cadmium, while the behavior of arsenic in rhizosphere was associated with the iron cycle. The results of the multi-parametric experiments can be used as a roadmap for low-cost and in-situ approach for producing safe rice without compromising the yield.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Cádmio/análise , Fertilizantes , Poluentes do Solo/análise , Solo
9.
AoB Plants ; 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28011455

RESUMO

Heat waves in combination with drought are predicted to occur more frequently with climate warming, yet their interactive effects on crop carbon and water balance are still poorly understood. Hence, research on the capacity of crops to withstand and recover from the combined stress is urgently needed. This study investigated the effects of drought and heat wave on a crop species as well as the recovery from the combined stress. Seedlings were grown in growth chambers under two soil water conditions (i.e. well watered and drought stress) at ambient temperature (26°C) for 10 days. Afterwards, half of the seedlings were exposed to a 7-day 42°C heat wave. All the drought-stressed seedlings were then rehydrated upon relief of the heat wave. Leaf gas exchange, the maximum carboxylation capacity (V cmax), plant growth, relative chlorophyll content and leaf water potential were examined during the experimental period. The heat wave reduced leaf gas exchange rates, V cmax and relative chlorophyll content, while it had no impacts on leaf water potential. In contrast, drought stress led to greater reductions in leaf gas exchange rates, growth and water potential than heat wave alone. Seedlings underwent a greater degree of stress in the combination of drought and heat wave than under the single drought treatment. The recovery of leaf gas exchange from drought stress lagged behind the water potential recovery and was delayed by heat wave. Our results show that drought stress had a predominant role in determining plant physiological responses and the negative impacts of drought stress were exacerbated by heat wave. The greater stress in the combination of drought and heat wave translated into the slower recovery of leaf gas exchange. Therefore, drought combined with heat wave may induce greater risks on crops under future climates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA