Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 192(1): 33-42, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34978016

RESUMO

PURPOSE: There remain a lack of biomarkers for endocrine therapy resistance in patients with breast cancer (BC), which is proving to be a great challenge. In vitro experiments have shown that downregulation of PTEN expression leads to resistance to tamoxifen (TAM) in BC cells. We aimed to investigate the predictive role of tumor PTEN promoter methylation and PTEN expression in long-term survival after TAM adjuvant therapy in patients with early-stage BC. METHODS: From 2001 to 2013, 105 patients with stage I-III BC who were treated with standardized adjuvant TAM for 5 years or until relapse in West China Hospital (WCH) were enrolled in this study. PTEN expression and DNA methylation of three specified sequences from the PTEN promoter in primary tumors were measured using immunohistochemistry and pyrosequencing. A cohort of 159 hormone receptor-positive patients receiving TAM treatment from The Cancer Genome Atlas (TCGA) database was used for verification. RESULTS: Median follow-up time for the WCH cohort was 141.7 months. The low, moderate, and high PTEN expression groups had differing 10-year disease-free survival (DFS) (42.3%, 55%, 81%, respectively, P = 0.027) and overall survival (OS) rates (65%, 84.2%, 90.5%, respectively, P = 0.027). Higher methylation levels of the second sequence (- 819 to - 787 bp), rather than the first (- 1143 to - 1107 bp) or third sequence (- 663 to - 593 bp), independently increased the risk of disease recurrence (hazard ratio = 2.60) and death (hazard ratio = 3.79) in the WCH cohort, according to multivariate Cox regression analysis. Importantly, out of the five CpG islands located within this sequence, only high methylation of the - 796 CpG island predicted shorter DFS and OS. In TCGA validation cohort, there was also a trend of higher methylation of the - 796 CpG island correlating with shorter disease-free intervals, with borderline significance (P = 0.057). CONCLUSION: Low PTEN expression and high methylation of its promoter (sequence - 819 to - 787 bp) in tissue predict poor DFS and OS in hormone receptor-positive early BC patients who received adjuvant TAM.


Assuntos
Neoplasias da Mama , Tamoxifeno , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Quimioterapia Adjuvante , Metilação de DNA , Intervalo Livre de Doença , Feminino , Hormônios , Humanos , Recidiva Local de Neoplasia , PTEN Fosfo-Hidrolase/genética , Prognóstico , Tamoxifeno/uso terapêutico
2.
Anal Biochem ; 526: 50-57, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28322802

RESUMO

We describe a simple method to accurately detect and quantify both Pten mutation and allele-specific loss using allele-specific PCR analysis. Our approach used a heterozygous genomic DNA with one wild-type and one mutant Pten allele as a reference at a single concentration to calculate the percent ratio of the wild-type Pten gene for the detection of allele-specific gene loss. With a standard curve, ratios from PCR data were used to quantitate the wild-type Pten allele copy number loss in tumor specimens. We demonstrate the utility of our approach to calculate allele-specific Pten loss during tumor progression and show that our approach generates quantitative data that are comparable to those obtained from digital droplet PCR. As a method to detect both mutation and allele-specific gene loss, our approach is less subject to the variability of sample amount that are often very limited in clinical analysis. Since conventional PCR is easy to be carried out, our method simplifies the workflow in any laboratory and would provide significant advantages for simplicity to quantify allele-specific gene loss.


Assuntos
DNA de Neoplasias/genética , Inativação Gênica , PTEN Fosfo-Hidrolase/deficiência , Reação em Cadeia da Polimerase/métodos , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Alelos , Animais , Variações do Número de Cópias de DNA/genética , Progressão da Doença , Camundongos , Mutação/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias da Glândula Tireoide/patologia
3.
Addict Biol ; 22(1): 103-116, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26283508

RESUMO

There has been increasing interest in the lateral habenula (LHb) given its potent regulatory role in many aversion-related behaviors. Interestingly, ethanol can be rewarding as well as aversive; we therefore investigated whether ethanol exposure alters pacemaker firing or glutamate receptor signaling in LHb neurons in vitro and also whether LHb activity in vivo might contribute to the acquisition of conditioned place aversion to ethanol. Surprisingly, in epithalamic slices, low doses of ethanol (1.4 mM) strongly accelerated LHb neuron firing (by ~60%), and ethanol's effects were much reduced by blocking glutamate receptors. Ethanol increased presynaptic glutamate release, and about half of this effect was mediated by dopamine subtype 1 receptors (D1Rs) and cyclic adenosine monophosphate (cAMP)-dependent signaling pathways. In agreement with these findings, c-Fos immunoreactivity in LHb regions was enhanced after a single administration of a low dose of ethanol (0.25 g/kg i.p.). Importantly, the same dose of ethanol in vivo also produced strong conditioned place aversion, and this was prevented by inhibiting D1Rs or neuronal activity within the LHb. By contrast, a higher dose (2 g/kg) led to ethanol conditioned place preference, which was enhanced by inhibiting neuronal activity or D1Rs within the LHb and suppressed by infusing aminomethylphosphonic acid or the D1R agonist SKF38393 within the LHb. Our in vitro and in vivo observations show, for the first time, that ethanol increases LHb excitation, mediated by D1R and glutamate receptors, and may underlie a LHb aversive signal that contributes to ethanol-related aversion.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Etanol/farmacologia , Habenula/fisiologia , Receptores Dopaminérgicos/efeitos dos fármacos , Receptores de Glutamato/efeitos dos fármacos , Animais , Feminino , Masculino , Modelos Animais , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Dopaminérgicos/fisiologia , Receptores de Glutamato/fisiologia
4.
Int J Neuropsychopharmacol ; 19(10)2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27234303

RESUMO

BACKGROUND: Development of new strategies that can effectively prevent and/or treat alcohol use disorders is of paramount importance, because the currently available treatments are inadequate. Increasing evidence indicates that the lateral habenula (LHb) plays an important role in aversion, drug abuse, and depression. In light of the success of high-frequency stimulation (HFS) of the LHb in improving helplessness behavior in rodents, we assessed the effects of LHb HFS on ethanol-drinking behavior in rats. METHODS: We trained rats to drink ethanol under an intermittent access two-bottle choice procedure. We used c-Fos immunohistochemistry and electrophysiological approaches to examine LHb activity. We applied a HFS protocol that has proven effective for reducing helplessness behavior in rats via a bipolar electrode implanted into the LHb. RESULTS: c-Fos protein expression and the frequency of both spontaneous action potential firings and spontaneous excitatory postsynaptic currents were higher in LHb neurons of ethanol-withdrawn rats compared to their ethanol-naïve counterparts. HFS to the LHb produced long-term reduction of intake and preference for ethanol, without altering locomotor activity. Conversely, low-frequency electrical stimulation to the LHb or HFS applied to the nearby nucleus did not affect drinking behavior. CONCLUSIONS: Our results suggest that withdrawal from chronic ethanol exposure increases glutamate release and the activity of LHb neurons, and that functional inhibition of the LHb via HFS reduces ethanol consumption. Thus, LHb HFS could be a potential new therapeutic option for alcoholics.

5.
Anal Biochem ; 497: 95-102, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26743720

RESUMO

Cancer development and progression frequently involve nucleotide mutations as well as amplifications and deletions of genomic segments. Quantification of allele-specific copy number is an important step in characterizing tumor genomes for precision medicine. Despite advances in approaches to high-throughput genomic DNA analysis, inexpensive and simple methods for analyzing complex nucleotide and copy number variants are still needed. Real-time polymerase chain reaction (PCR) methods for discovering and genotyping single nucleotide polymorphisms are becoming increasingly important in genetic analysis. In this study, we describe a simple, single-tube, probe-free method that combines SYBR Green I-based quantitative real-time PCR and quantitative melting curve analysis both to detect specific nucleotide variants and to quantify allele-specific copy number variants of tumors. The approach is based on the quantification of the targets of interest and the relative abundance of two alleles in a single tube. The specificity, sensitivity, and utility of the assay were demonstrated in detecting allele-specific copy number changes critical for carcinogenesis and therapeutic intervention. Our approach would be useful for allele-specific copy number analysis or precise genotyping.


Assuntos
Dosagem de Genes , Técnicas de Genotipagem/métodos , Neoplasias/genética , PTEN Fosfo-Hidrolase/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Alelos , Animais , Benzotiazóis , Linhagem Celular Tumoral , DNA/genética , Variações do Número de Cópias de DNA , Diaminas , Corantes Fluorescentes/química , Humanos , Camundongos , Desnaturação de Ácido Nucleico , Compostos Orgânicos/química , Polimorfismo de Nucleotídeo Único , Quinolinas
6.
Cell Mol Neurobiol ; 34(7): 1047-58, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25038638

RESUMO

Mesenchymal stem cells (MSCs) are proposed as a promising source for cell-based therapies in neural disease. Although increasing numbers of studies have been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic response and the differentiation status of these cells is still unclear. In the present study, we demonstrated that MSCs in varying neural differentiation states display various chemotactic responses to stromal cell-derived factor-1α (SDF-1α). The chemotactic responses of MSCs under different differentiation stages in response to SDF-1α were analyzed by Boyden chamber, and the results showed that cells of undifferentiation, 24-h preinduction, 5-h induction, and 18-h maintenance states displayed a stronger chemotactic response to SDF-1α, while 48-h maintenance did not. Further, we found that the phosphorylation levels of PI3K/Akt, ERK1/2, SAPK/JNK, and p38MAPK are closely related to the differentiation states of MSCs subjected to SDF-1α, and finally, inhibition of SAPK/JNK signaling significantly attenuates SDF-1α-stimulated transfilter migration of MSCs of undifferentiation, 24-h preinduction, 18-h maintenance, and 48-h maintenance, but not MSCs of 5-h induction. Meanwhile, interference with PI3K/Akt, p38MAPK, or ERK1/2 signaling prevents only cells at certain differentiation state from migrating in response to SDF-1α. Collectively, these results demonstrate that MSCs in varying neural differentiation states have different migratory capacities, thereby illuminating optimization of the therapeutic potential of MSCs to be used for neural regeneration after injury.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Quimiotaxia/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Neurônios/citologia , Animais , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley
7.
JCO Clin Cancer Inform ; 8: e2300140, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295322

RESUMO

PURPOSE: Thyroid peroxidase (TPO) is essential for the synthesis of thyroid hormones. However, specific mutations render TPO antigenic and prone to autoimmune attacks leading to thyroid cancer, TPO deficiency, and congenital hypothyroidism (CH). Despite technological advancement, most experimental procedures cannot quickly identify the genetic causes of CH nor detect thyroid cancer in the early stages. METHODS: We performed saturated computational mutagenesis to calculate the folding energy changes (∆∆G) caused by missense mutations and analyzed the mutations involved in post-translational modifications (PTMs). RESULTS: Our results showed that the functional important missense mutations occurred in the heme peroxidase domain. Through computational saturation mutagenesis, we identified the TPO mutations in G393 and G348 affecting protein stability and PTMs. Our folding energy calculations revealed that seven of nine somatic thyroid cancer mutations destabilized TPO. CONCLUSION: These findings highlight the impact of these specific mutations on TPO stability, linking them to thyroid cancer and other genetic thyroid-related disorders. Our results show that computational mutagenesis of proteins provides a quick insight into rare mutations causing Mendelian disorders and cancers in humans.


Assuntos
Hipotireoidismo Congênito , Neoplasias da Glândula Tireoide , Humanos , Hipotireoidismo Congênito/genética , Mutação , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Neoplasias da Glândula Tireoide/genética , Programas de Rastreamento
8.
Differentiation ; 84(2): 214-22, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22824626

RESUMO

Mesenchymal stromal cells (MSCs) show promise for treatment of a variety of neurological and other disorders. Cat has a high degree of linkage with the human genome and has been used as a model for analysis of neurological disorders such as stroke, Alzheimer's disease and motor disorders. The present study was designed to characterize bone marrow-derived MSCs from cats and to investigate the capacity to generate functional peptidergic neurons. MSCs were expanded with cells from the femurs of cats and then characterized by phenotype and function. Phenotypically, feline and human MSCs shared surface markers, and lacked hematopoietic markers, with similar morphology. As compared to a subset of human MSCs, feline MSCs showed no evidence of the major histocompatibility class II. Since the literature suggested Stro-1 as an indicator of pluripotency, we compared early and late passages feline MSCs and found its expression in >90% of the cells. However, the early passage cells showed two distinct populations of Stro-1-expressing cells. At passage 5, the MSCs were more homogeneous with regards to Stro-1 expression. The passage 5 MSCs differentiated to osteogenic and adipogenic cells, and generated neurons with electrophysiological properties. This correlated with the expression of mature neuronal markers with concomitant decrease in stem cell-associated genes. At day 12 induction, the cells were positive for MAP2, Neuronal Nuclei, tubulin ßIII, Tau and synaptophysin. This correlated with electrophysiological maturity as presented by excitatory postsynaptic potentials (EPSPs). The findings indicate that the cat may constitute a promising biomedical model for evaluation of novel therapies such as stem cell therapy in such neurological disorders as Alzheimer's disease and stroke.


Assuntos
Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/citologia , Neurogênese , Neurônios/metabolismo , Fenótipo , Adipogenia , Animais , Antígenos de Superfície/metabolismo , Gatos , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores , Humanos , Neurônios/citologia , Osteogênese , Especificidade da Espécie
9.
Sci Rep ; 13(1): 18476, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898690

RESUMO

The innate immune stimulator of interferon genes (STING) pathway is known to activate type I interferons (IFN-I) and participate in generating antitumor immunity. We previously produced hDT806, a recombinant diphtheria immunotoxin, and demonstrated its efficacy against head and neck squamous cell carcinoma (HNSCC). However, it's unknown whether the tumor-intrinsic STING plays a role in the anti-HNSCC effects of hDT806. In this study, we investigated the innate immune modulation of hDT806 on HNSCC. hDT806 significantly upregulated the level of STING and the ratio of p-TBK1/TBK1 in the HNSCC cells. Moreover, intratumoral hDT806 treatment increased the expression of STING-IFN-I signaling proteins including IFNA1, IFNB, CXCL10 and MX1, a marker of IFN-I receptor activity, in the HNSCC xenografts. Overexpression of STING mimicked the hDT806-induced upregulation of the STING-IFN-I signaling and induced apoptosis in the HNSCC cells. In the mouse xenograft models of HNSCC with STING overexpression, we observed a significant suppression of tumor growth and reduced tumor weight with increased apoptosis compared to their control xenograft counterparts without STING overexpression. Collectively, our data revealed that hDT806 may act as a stimulator of tumor-intrinsic STING-IFN-I signaling to inhibit tumor growth in HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Imunotoxinas , Interferon Tipo I , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Transdução de Sinais , Interferon Tipo I/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
10.
J Pharmacol Exp Ther ; 341(1): 43-50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22209890

RESUMO

Previous studies in vivo have shown that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse. Although opioid receptors, especially the µ-opioid receptors (MORs), may be involved, the cellular mechanisms mediating the effects of salsolinol have not been fully explored. In the current study, we used whole-cell patch-clamp recordings to examine the effects of salsolinol on dopamine neurons of the ventral tegmental area (VTA) in acute brain slices from Sprague-Dawley rats. Salsolinol (0.01-1 µM) dose-dependently and reversibly increased the ongoing firing of dopamine neurons; this effect was blocked by naltrexone, an antagonist of MORs, and gabazine, an antagonist of GABA(A) receptors. We further showed that salsolinol reduced the frequency without altering the amplitude of spontaneous GABA(A) receptor-mediated inhibitory postsynaptic currents in dopamine neurons. The salsolinol-induced reduction was blocked by both naltrexone and [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin, an agonist of MORs. Thus, salsolinol excites VTA-dopamine neurons indirectly by activating MORs, which inhibit GABA neurons in the VTA. This form of disinhibition seems to be a novel mechanism underlying the effects of salsolinol.


Assuntos
Potenciais de Ação/fisiologia , Neurônios Dopaminérgicos/metabolismo , Isoquinolinas/farmacologia , Receptores Opioides mu/metabolismo , Área Tegmentar Ventral/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/efeitos dos fármacos
11.
J Pharmacol Exp Ther ; 341(1): 33-42, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22209891

RESUMO

It is known that the posterior ventral tegmental area (p-VTA) differs from the anterior VTA (a-VTA) in that rats learn to self-administer ethanol into the p-VTA, but not into the a-VTA. Because activation of VTA dopaminergic neurons by ethanol is a cellular mechanism underlying the reinforcement of ethanol consumption, we hypothesized that ethanol may exert different effects on dopaminergic neurons in the p-VTA and a-VTA. In patch-clamp recordings in midbrain slices from young rats (postnatal days 22-32), we detected no significant difference in electrophysiological properties between p-VTA and a-VTA dopaminergic neurons. However, acute exposure to ethanol (21-86 mM) stimulated p-VTA dopaminergic neurons but suppressed a-VTA dopaminergic neurons. Conversely, ethanol (>21 mM) dose-dependently reduced the frequency of the GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) generated by inhibitory neuronal firing but not miniature inhibitory postsynaptic currents (mIPSCs) in p-VTA dopaminergic neurons. By contrast, ethanol increased the frequency and amplitude of both sIPSCs and mIPSCs in a-VTA dopaminergic neurons. All of these effects of ethanol were abolished by a GABA(A) receptor antagonist. There was a strong negative correlation between ethanol-evoked modulation of sIPSCs and neuronal firing in VTA dopaminergic neurons. These results indicate that GABAergic inputs play an important role in ethanol's actions in the VTA. The differential effects of ethanol on sIPSCs and neuronal firing in the p-VTA and a-VTA could be the basis for ethanol reinforcement via the p-VTA.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Etanol/farmacologia , GABAérgicos/farmacologia , Área Tegmentar Ventral/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Animais Recém-Nascidos , Neurônios Dopaminérgicos/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/efeitos dos fármacos
12.
Cancers (Basel) ; 14(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406486

RESUMO

Hepatocellular carcinoma (HCC) is a lethal malignancy with high mortality. The inhibition of cyclin-dependent kinase 7 (CDK7) activity has shown therapeutic efficacy in HCC. However, the underlying molecular mechanisms remain elusive. Here, we show that three HCC lines, HepG2, Hep3B, and SK-Hep-1, were highly susceptible to the CDK7 inhibitor THZ1. In mouse models, THZ1 effectively reduced HepG2 tumor growth and tumor weight. THZ1 arrested cell cycle and triggered MYC-related apoptosis in HepG2. To evaluate how MYC protein levels affected THZ1-induced apoptotic cell death, we overexpressed MYC in HepG2 and found that exogenously overexpressed MYC promoted cell cycle progression and increased cells in the S phase. THZ1 drastically engendered the apoptosis of MYC-overexpressing HepG2 cells in the S and G2/M phases. Importantly, transcription-inhibition-induced apoptosis is associated with DNA damage, and exogenous MYC expression further enhanced the THZ1-induced DNA damage response in MYC-overexpressing HepG2 cells. Consistently, in the HepG2 xenografts, THZ1 treatment was associated with DNA-damage-induced cell death. Together, our data indicate that the converged effect of MYC-promoted cell cycle progression and CDK7 inhibition by THZ1 confers the hypersensitivity of HCC to DNA-damage-induced cell death. Our findings may suggest a new therapeutic strategy of THZ1 against HCC.

13.
Biology (Basel) ; 11(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35453686

RESUMO

Over 90% of head and neck squamous cell carcinoma (HNSCC) overexpresses the epidermal growth factor receptor (EGFR). However, the EGFR-targeted monotherapy response rate only achieves 10-30% in HNSCC. Recombinant immunotoxin (RIT) often consists of an antibody targeting a tumor antigen and a toxin (e.g., diphtheria toxin [DT]) that kills cancer cells. We produced a humanized RIT, designated as hDT806, targeting overexpressed EGFR and investigated its effects in HNSCC. Distinct from the EGFR-targeted tyrosine kinase inhibitor erlotinib or antibody cetuximab, hDT806 effectively suppressed cell proliferation in the four HNSCC lines tested (JHU-011, -013, -022, and -029). In JHU-029 mouse xenograft models, hDT806 substantially reduced tumor growth. hDT806 decreased EGFR protein levels and disrupted the EGFR signaling downstream effectors, including MAPK/ERK1/2 and AKT, while increased proapoptotic proteins, such as p53, caspase-9, caspase-3, and the cleaved PAPR. The hDT806-induced apoptosis of HNSCC cells was corroborated by flow cytometric analysis. Furthermore, hDT806 resulted in a drastic inhibition in RNA polymerase II carboxy-terminal domain phosphorylation critical for transcription and a significant increase in the γH2A.X level, a DNA damage marker. Thus, the direct disruption of EGFR signaling, transcription inhibition, DNA damage, as well as apoptosis induced by hDT806 may contribute to its antitumor efficacy in HNSCC.

14.
Acta Pharmacol Sin ; 32(2): 175-81, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21293469

RESUMO

AIM: The dorsal striatum has been proposed to contribute to the formation of drug-seeking behaviors, leading to excessive and compulsive drug usage, such as addiction. The current study aimed to investigate the involvement of extracellular signal-regulated kinase (ERK) pathway in the modification of striatal synaptic plasticity. METHODS: Ethanol was administered to rats in drinking water at concentration of 6% (v/v) for 30 days. Rats were sacrificed on day 10, 20, or 30 during ethanol intake or on withdrawal day 1, 3, or 7 following 30-d ethanol intake. The striata were removed either for electrophysiological recording or for protein immuno-blot analysis. Extracellular recording technique was used to record population spikes (PS) induced by high-frequency stimulation (HFS) in the dorsolateral striatum (DLS). RESULTS: Corticostriatal long-term depression (LTD) was determined to be dependent upon ERK signaling. Chronic ethanol intake (CEI) attenuated ERK phosphorylation and LTD induction, whereas withdrawal for one day (W1D) potentiated ERK phosphorylation and LTD induction. These results showed that the impact of chronic ethanol intake and withdrawal on corticostriatal synaptic plasticity was associated with ethanol's effect on ERK phosphorylation. In particular, pharmacological inhibition of ERK hyper-phosphorylation by U0126 prevented LTD induction in the DLS and attenuated ethanol withdrawal syndrome as well. CONCLUSION: In rat DLS, chronic ethanol intake and withdrawal altered LTD induction via ERK signaling pathway. Ethanol withdrawal syndrome is mediated, at least partly, by ERK hyper-phosphorylation in the DLS.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Etanol/toxicidade , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/fisiopatologia , Animais , Western Blotting , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Estimulação Elétrica , Etanol/administração & dosagem , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo , Fatores de Tempo
15.
Head Neck ; 43(6): 1721-1729, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33533173

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) overexpression is one of the most notable characteristics in head and neck squamous cell carcinoma (HNSCC). The MAPK kinase (MEK) inhibitor trametinib has shown efficacy to treat HNSCC; however, the molecular mechanism remains unclear. METHODS: HNSCC lines, mouse models, Western blot, and flow cytometry were employed to analyze the anticancer effects of trametinib. RESULTS: The JHU-011, JHU-022, and JHU-029 HNSCC cells with different genetic alterations were highly susceptible to trametinib. Trametinib effectively reduced EGFR expression, which was accompanied by the reduction of pro-survival protein MYC, and the increased expression of a MYC-targeted cyclin-dependent kinase inhibitor p27kip1 and pro-apoptotic protein BIM. Trametinib resulted in G1 arrest of the cells, markedly reduced cell numbers in S phase, and significantly increased apoptosis. In mouse models, trametinib strongly inhibited tumors growth. CONCLUSIONS: The MAPK-ERK signaling inhibition by trametinib may target EGFR and the downstream proteins against HNSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Receptores ErbB/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
16.
Cell Oncol (Dordr) ; 42(3): 369-380, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30788663

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is an aggressive malignancy. In HCC, mitogen-activated protein kinase (MAPK) signaling is overactivated. The MAPK kinase (MEK) inhibitor trametinib has been approved to treat several types of advanced cancers with a BRAF mutation. Herein, we examined whether trametinib has efficacy against HCC. METHODS: The effects of trametinib on cell viability, proliferation and tumor growth were assessed in HCC-derived cell lines and mouse xenograft models. Western blot analysis and immunohistochemistry were used to identify key regulators critical for HHC cell proliferation and tumor growth. RESULTS: We found that trametinib dose-dependently inhibited the viability and proliferation of HCC cells. We also found that a strong suppression of MEK by trametinib downregulated the pro-survival protein MYC, but upregulated the pro-apoptotic protein BIM. This dual differential regulation of MYC and BIM was found to be accompanied by upregulation of a MYC-targeted cyclin dependent kinase inhibitor, p27kip1 (p27), and an apoptosis marker, cleaved poly (ADP ribose) polymerase 1 (PARP), indicating a concurrent modulation of cell cycle- and apoptosis-related pathways. Importantly, we found that MYC overexpression did not block increased BIM in trametinib-treated HCC cells, indicating that MAPK signaling independently regulates MYC and BIM. Finally, we found that trametinib in vivo inhibited HepG2 xenograft tumor growth and attenuated tumor invasion into surrounding tissues. Consistent with the in vitro findings, MYC expression was found to be reduced, while p27 expression was found to be elevated, and BIM expression and cleaved PARP levels were found to be increased in trametinib-treated xenograft tumors. CONCLUSIONS: Collectively, our data indicate that trametinib exhibits efficacy in treating HCC cells via distinct regulation of the MYC and BIM pathways. As such, targeting MEK to block MAPK signaling with trametinib may provide novel treatment opportunities for HCC.


Assuntos
Proteína 11 Semelhante a Bcl-2/genética , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/genética , Piridonas/farmacologia , Pirimidinonas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Proteína 11 Semelhante a Bcl-2/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética
17.
Acta Pharmacol Sin ; 29(6): 646-52, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18501110

RESUMO

AIM: To investigate the effects of chronic ethanol intake on the locomotor activity and the levels of calcium/calmodulin-dependent protein kinase IV (CaM kinase IV) in the nucleus accumbens (NAc) of rats. Simultaneously, the effects of nonselective opioid antagonist (naloxone) on the CaM kinase IV expression in the NAc and ethanol consumption of rats were also observed. METHODS: Ethanol was administered in drinking water at the concentrations of 6% (v/v), for 28 d. The locomotor activity of rats was investigated in the open-field apparatus. CaM kinase IV levels in the NAc were analyzed using Western blotting. RESULTS: Rats consuming ethanol solution exhibited a significant decrease of ambulation activity, accompanied by a reduced frequency of explorative rearing in an open-field task on d 7 and d 14 of chronic ethanol ingestion, whereas presumed adaptation to the neurological effects of ethanol was observed on d 28. Chronic ethanol intake elicited a significant decrease of the CaM kinase IV expression in the nuclei, but not in the cytoplasm of the NAc on d 28. Naloxone treatment significantly attenuated ethanol intake of rats and antagonized the decrease of CaM kinase IV in the nuclei of NAc neurons. The cytosolic CaM kinase IV protein levels of the NAc also increased in rats exposed to ethanol plus naloxone. CONCLUSION: Chronic ethanol intake-induced changes in explorative behavior is mediated at least partly by changes in CaM kinase IV signaling in the nuclei of the NAc, and naloxone attenuates ethanol consumption through antagonizing the downregulation of CaM kinase IV in the NAc.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Comportamento Animal/fisiologia , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/biossíntese , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/enzimologia , Animais , Peso Corporal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/antagonistas & inibidores , Etanol/antagonistas & inibidores , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
18.
Oncotarget ; 9(91): 36331-36343, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30555632

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited treatment options. It is urgent to develop new therapeutics against this disease. Salvinolic acid B (Sal-B) is a leading bioactive component of Salvia miltiorrhiza Bunge, a well-known Chinese medicine for treating various diseases without appreciable adverse effects. To understand the antitumor properties of Sal-B against TNBC, we analyzed its effects on the cell viability, cell cycle and apoptosis of triple-negative MDA-MB-231 cells with the hormone receptor-positive MCF-7 cells as the control. The in vitro analysis showed that Sal-B could significantly reduce the cell viability and suppress the proliferation of both MDA-MB-231 and MCF-7 cells with decreased cyclin B1 expression, but with no noticeable cell cycle phase change. In mouse models, Sal-B markedly inhibited the growth, decreased the PCNA expression, and increased the cell apoptosis of MDA-MB-231 tumor xenografts. To understand the antitumor mechanisms, we analyzed the expression levels of ceramides, and anti-apoptotic (Bcl-xL and survivin) and pro-apoptotic (caspase-3 and caspase-8) proteins. We found that Sal-B enhanced the ceramide accumulation and inhibited the anti-apoptotic protein expression. Interestingly, the ceramide accumulation was accompanied by decreased expression of glucosylceramide and GM3 synthases, two key enzymes regulating ceramide metabolism. These findings indicate that Sal-B exerts its antitumor effects at least partially by inducing the ceramide accumulation and ceramide-mediated apoptosis via inhibiting the expression of glucosylceramide and GM3 synthases, which was independent of estrogen receptor α. Sal-B appears to be a promising therapeutic agent against TNBC.

19.
Nat Rev Cancer ; 22(4): 194, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35110731
20.
Oncotarget ; 8(65): 108712-108725, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29312562

RESUMO

The purpose of this study was to identify microRNAs (miRNAs) closely associated with the prognosis of triple-negative breast cancer (TNBC) and their possible targets. This study recruited 125 early-stage TNBC patients, including 40 cases in the experimental group (20 cases with poor prognoses vs. 20 cases with good prognoses) and 85 cases in the validation group (27 cases with poor prognoses vs. 58 cases with good prognoses). In the experimental group, miRNA microarray showed 34 differentially expressed miRNAs in patients with different prognoses. We selected 5 miRNAs for validation. The differential expression of miR-221-3p was further verified in the experimental and validation groups using real-time polymerase chain reaction (PCR). High miR-221-3p expression was associated with better 5-year disease-free survival (DFS) (HR = 0.480; 95% CI, 0.263-0.879; p = 0.017) of TNBC patients. High expression of its target gene PARP1 predicted poorer 5-year DFS (HR = 2.236, 95% CI, 1.209-4.136, p = 0.010). MiR-221-3p down-regulated PARP1 by targeting its 3'-untranslated region. In conclusion, low miR-221-3p expression may contribute to the poor outcome of TNBC patients through regulating PARP1. MiR-221-3p likely plays a role as a PARP1 inhibitor by directly regulating PARP1 expression, thereby affecting the prognoses of TNBC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA