Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nanotechnology ; 35(32)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38688249

RESUMO

Dealing with bone defects is a significant challenge to global health. Electrospinning in bone tissue engineering has emerged as a solution to this problem. In this study, we designed a PVDF-b-PTFE block copolymer by incorporating TFE, which induced a phase shift in PVDF fromαtoß, thereby enhancing the piezoelectric effect. Utilizing the electrospinning process, we not only converted the material into a film with a significant surface area and high porosity but also intensified the piezoelectric effect. Then we used polydopamine to immobilize BMP-2 onto PVDF-b-PTFE electrospun nanofibrous membranes, achieving a controlled release of BMP-2. The scaffold's characters were examined using SEM and XRD. To assess its osteogenic effectsin vitro, we monitored the proliferation of MC3T3-E1 cells on the fibers, conducted ARS staining, and measured the expression of osteogenic genes.In vivo, bone regeneration effects were analyzed through micro-CT scanning and HE staining. ELISA assays confirmed that the sustained release of BMP-2 can be maintained for at least 28 d. SEM images and CCK-8 results demonstrated enhanced cell viability and improved adhesion in the experimental group. Furthermore, the experimental group exhibited more calcium nodules and higher expression levels of osteogenic genes, including COL-I, OCN, and RUNX2. HE staining and micro-CT scans revealed enhanced bone tissue regeneration in the defective area of the PDB group. Through extensive experimentation, we evaluated the scaffold's effectiveness in augmenting osteoblast proliferation and differentiation. This study emphasized the potential of piezoelectric PVDF-b-PTFE nanofibrous membranes with controlled BMP-2 release as a promising approach for bone tissue engineering, providing a viable solution for addressing bone defects.


Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Indóis , Nanofibras , Osteogênese , Polímeros , Engenharia Tecidual , Alicerces Teciduais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Nanofibras/química , Regeneração Óssea/efeitos dos fármacos , Animais , Camundongos , Indóis/química , Indóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Engenharia Tecidual/métodos , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Proliferação de Células/efeitos dos fármacos , Linhagem Celular , Proteínas Imobilizadas/farmacologia , Proteínas Imobilizadas/química , Sobrevivência Celular/efeitos dos fármacos
2.
Pak J Pharm Sci ; 34(3): 909-914, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34602413

RESUMO

N-Methyl-D-aspartate receptor (NMDAR)-induced antioxidation is a significant cause of neuronal injury after ischemic stroke. In a previous work, we verified the neuroprotective roles of geniposide during tMCAO in vivo. However, it remains unknown whether geniposide ameliorates injury to hippocampal neurons during Ischemic Long Term Potentiation (iLTP) induction in vitro. After induction of cells oxygen-glucose deprivation or hydrogen peroxide, the protection of geniposide evaluated by MTT assay and electrophysiological tests. In this study, we suggested neuronal cell apoptosis was attenuated by geniposide. Furthermore, field excitatory postsynaptic potentials (fEPSCs) following postischemic LTP were assessed by electrophysiological tests. Finally, we determined that medium and high doses of geniposide attenuated oxidative stress insult and improved iLTP. Importantly, these effects were abolished by cotreatment with geniposide and the GluN2A antagonist NVP. In contrast, the GluN2B inhibitor ifenprodil failed to have an effect. In conclusion, we suggest for the first time that treatment with geniposide can attenuate postischemic LTP induction in a concentration-dependent manner. We infer that GluN2A-containing NMDARs are involved in the neuroprotection induced by geniposide treatment in ischemia.


Assuntos
Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/metabolismo , Iridoides/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Peróxido de Hidrogênio/farmacologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Técnicas In Vitro , Infarto da Artéria Cerebral Média/fisiopatologia , Neurônios/metabolismo , Oxidantes/farmacologia , Células PC12 , Piperidinas/farmacologia , Quinoxalinas/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Front Pharmacol ; 15: 1406188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005933

RESUMO

Introduction: As a new discipline, network pharmacology has been widely used to disclose the material basis and mechanism of Traditional Chinese Medicine in recent years. However, numerous researches indicated that the material basis of TCMs identified based on network pharmacology was the mixtures of beneficial and harmful substances rather than the real material basis. In this work, taking the anti-NAFLD (non-alcoholic fatty liver disease) effect of Bai Shao (BS) as a case, we attempted to propose a novel bioinformatics strategy to uncover the material basis and mechanism of TCMs in a precise manner. Methods: In our previous studies, we have done a lot work to explore TCM-induced hepatoprotection. Here, by integrating our previous studies, we developed a novel computational pharmacology method to identify hepatoprotective ingredients from TCMs. Then the developed method was used to discover the material basis and mechanism of Bai Shao against Non-alcoholic fatty liver disease by combining with the techniques of molecular network, microarray data analysis, molecular docking, and molecular dynamics simulation. Finally, literature verification method was utilized to validate the findings. Results: A total of 12 ingredients were found to be associated with the anti-NAFLD effect of BS, including monoterpene glucosides, flavonoids, triterpenes, and phenolic acids. Further analysis found that IL1-ß, IL6, and JUN would be the key targets. Interestingly, molecular docking and molecular dynamics simulation analysis showed that there indeed existed strong and stable binding affinity between the active ingredients and the key targets. In addition, a total of 23 NAFLD-related KEGG pathways were enriched. The major biological processes involved by these pathways including inflammation, apoptosis, lipid metabolism, and glucose metabolism. Of note, there was a great deal of evidence available in the literature to support the findings mentioned above, indicating that our method was reliable. Discussion: In summary, the contributions of this work can be summarized as two aspects as follows. Firstly, we systematically elucidated the material basis and mechanism of BS against NAFLD from multiple perspectives. These findings further enhanced the theoretical foundation of BS on NAFLD. Secondly, a novel computational pharmacology research strategy was proposed, which would assist network pharmacology to uncover the scientific connotation TCMs in a more precise manner.

4.
Brain Res ; 1797: 148115, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36202223

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the progressive degeneration of neurons in the substantia nigra pars compacta. Deep brain stimulation (DBS) is an effective treatment for PD cardinal motor symptoms. DBS of GPe has been recognized as an effective treatment option for motor symptoms of PD, but the mechanism is still essentially unknown. To investigate the impact of DBS in the external segment of globus pallidus (GPe) on the pathway of the basal ganglia (BG), we recorded the electrical activities of single neurons and local field potential (LFP) of the internal segment of globus pallidus (GPi). The results showed that the firing rate of GPi neurons in the 6-OHDA lesioned rats returned to the normal level after GPe-DBS for two weeks. Moreover, the CV value of GPi neurons is significantly lower than that in the PD group. The different frequency bands of GPi LFP in PD rats have improved correspondingly. These findings indicate that the improvement of the electrical activity of GPi by GPe-DBS in PD rats may be an important electrophysiological mechanism for treating PD.


Assuntos
Estimulação Encefálica Profunda , Fenômenos Fisiológicos do Sistema Nervoso , Doença de Parkinson , Ratos , Animais , Doença de Parkinson/terapia , Globo Pálido/fisiologia , Estimulação Encefálica Profunda/métodos , Gânglios da Base
5.
Front Pharmacol ; 13: 969979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105213

RESUMO

The efforts focused on discovering potential hepatoprotective drugs are critical for relieving the burdens caused by liver diseases. Traditional Chinese medicine (TCM) is an important resource for discovering hepatoprotective agents. Currently, there are hundreds of hepatoprotective products derived from TCM available in the literature, providing crucial clues to discover novel potential hepatoprotectants from TCMs based on predictive research. In the current study, a large-scale dataset focused on TCM-induced hepatoprotection was established, including 676 hepatoprotective ingredients and 205 hepatoprotective TCMs. Then, a comprehensive analysis based on the structure-activity relationship, molecular network, and machine learning techniques was performed at molecular and holistic TCM levels, respectively. As a result, we developed an in silico model for predicting the hepatoprotective activity of ingredients derived from TCMs, in which the accuracy exceeded 85%. In addition, we originally proposed a material basis and a drug property-based approach to identify potential hepatoprotective TCMs. Consequently, a total of 12 TCMs were predicted to hold potential hepatoprotective activity, nine of which have been proven to be beneficial to the liver in previous publications. The high rate of consistency between our predictive results and the literature reports demonstrated that our methods were technically sound and reliable. In summary, systematical predictive research focused on the hepatoprotection of TCM was conducted in this work, which would not only assist screening of potential hepatoprotectants from TCMs but also provide a novel research mode for discovering the potential activities of TCMs.

6.
Brain Res Bull ; 181: 121-128, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35077843

RESUMO

Beta band (12-30 Hz) hypersynchrony within the basal ganglia-thalamocortical network has been suggested as a hallmark of Parkinson's disease (PD) pathophysiology. Abnormal beta band oscillations are found in the pedunculopontine nucleus (PPN) and primary motor cortex (M1) and are correlated with dopamine depletion. Dopamine acts locomotion and motor performance mainly through dopamine receptors (D1 and D2). However, the precise mechanism by which dopamine receptors regulate beta band electrophysiological activities between the PPN and M1 is still unknown. Here, we recorded the neuronal activity of the PPN and M1 simultaneously by the administration of the drug (SCH23390 and raclopride), selectively blocking the dopamine D1 receptor and D2 receptor. We discovered that the increased coherent activity of the beta band (12-30 Hz) between M1 and PPN in the lesioned group could be reduced and restored by injecting raclopride in the resting and wheel running states. Our studies revealed the unique role of D2 dopamine receptor signaling in regulating ß band oscillatory activity in M1 and PPN and their relationship after the loss of dopamine, which contributes to elucidating the underlying mechanism of the pathophysiology of PD.


Assuntos
Ritmo beta/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Córtex Motor/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Núcleo Tegmental Pedunculopontino/efeitos dos fármacos , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D2/efeitos dos fármacos , Animais , Benzazepinas/farmacologia , Modelos Animais de Doenças , Racloprida/farmacologia , Ratos
7.
Front Aging Neurosci ; 14: 993250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081895

RESUMO

Post-stroke depression (PSD) is a common complication after stroke. PSD is associated with emotional disorders and psychological dependence, which are potential risk factors for stroke recurrence and suicidality. This study aimed to perform an umbrella review of therapies for PSD through a comprehensive literature search. A systematic search was conducted in the PubMed and Web of Science by two independent authors. We examined the Hamilton Depression Scale (HAMD), Activities of daily living (ADL), Neurologic function as efficacy endpoints, and the incidence of adverse events as safety profiles. Seventeen eligible studies, including 267 clinical trials were included in this study. The results showed that High-Frequency Repetitive Transcranial Magnetic Stimulation (HfrTMS), Acupuncture/EA+conventional treatment, Escitalopram, Modified Sini San, Moxibustion, Xiaoyao Formula, Paroxetine, Chinese herbal medicine, Exercise, Citalopram, and Cognitive behavioral therapy are beneficial for improving the depression symptoms of patients with PSD. HfrTMS and Sertraline may have an impact on slowing the scores of activities of daily living or neurologic function. In addition, Acupuncture/EA+conventional, Escitalopram, Citalopram, Sertraline, and Fluoxetine showed no serious adverse events in PSD patients. Our study demonstrated that 11 treatment methods can effectively improve the condition of PSD patients.

8.
Front Aging Neurosci ; 14: 1020321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248005

RESUMO

Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD). The most common sites targeted for DBS in PD are the globus pallidus internal (GPi) and subthalamic nucleus (STN). However, STN-DBS and GPi-DBS have limited improvement in some symptoms and even aggravate disease symptoms. Therefore, discovering new targets is more helpful for treating refractory symptoms of PD. Therefore, our study selected a new brain region, the lateral globus pallidus (GP), as the target of DBS, and the study found that GP-DBS can improve motor symptoms. It has been reported that the thalamic parafascicular (PF) nucleus is strongly related to PD pathology. Moreover, the PF nucleus and GP have very close direct and indirect fiber connections. However, whether GP-DBS can change the activity of the PF remains unclear. Therefore, in this study, we monitored the activity changes in the PF nucleus in PD rats during a quiet awake state after GP-DBS. We found that GP-DBS could reverse the electrical activity of the PF nucleus in PD model rats, including the discharge pattern of the neurons and the local field potential (0.7-12 and 12-70 Hz). Based on the results mentioned above, PF activity in PD model rats could be changed by GP-DBS. Thus, the normalization of PF neuronal activity may be a potential mechanism for GP-DBS in the treatment of PD; these findings lay the foundation for PD treatment strategies.

9.
Front Aging Neurosci ; 14: 984895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966793

RESUMO

Curcumin has been reported to improve or prevent movement disorders in Parkinson's disease (PD); however, its low bioavailability is the biggest obstacle to its application. To optimize the limited efficacy of curcumin and to improve its protective effects against PD, we prepared and tested a novel curcumin oil solution. In vivo imaging was used to confirm that the curcumin oil solution has higher bioavailability than curcumin alone. To test its motor effects on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced movement disorders, behavioral tests, including the open-field test, pole test, rotarod test, and automated gait analysis were used. Finally, pathological evaluation using immunohistochemistry and western blotting analysis was done. Encouragingly, the behavioral test findings exhibited a better protective effect against MPTP-induced movement disorders. In addition, it had a greater protective effect on dopaminergic neurons in the compact part of the substantia nigra along with the PD process according to pathological evaluation. This novel curcumin oil solution may provide a new choice for PD prevention as a dietary supplement or clinically assisted treatment based on its better bioavailability and efficiency.

10.
Am J Transl Res ; 14(11): 7726-7743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505285

RESUMO

OBJECTIVE: To investigate the role of Osteopontin (OPN) in mediating macroautophagy, autophagy, and neuroplasticity in the ipsilateral hemisphere after stroke. METHODS: Focal stroke was induced by photothrombosis in adult mice. Spatiotemporal expression of endogenous OPN and BECN1 was assessed by immunohistochemistry. Motor function was determined by the grid-walking and cylinder tasks. We also evaluated markers of neuroplasticity and autophagy using biochemical and histology analyses. RESULTS: Herein, we showed that endogenous OPN and beclin1 were increased in the peri-infarct area of stroked patients and mice. Intracerebral administration of OPN (0.1 mg/ml; 3 ml) significantly improved performance in motor behavioral tasks compared with non-OPN-treated stroke mice. Furthermore, the neural repair was induced in OPN-treated stroke mice. We found that OPN treatment resulted in a significantly higher density of a presynaptic marker (vesicular glutamate transporter 1, VgluT1) and synaptic plasticity marker (synaptophysin, SYN) within the peri-infarct region. OPN treatment in stroke mice not only increased protein levels of integrin ß1 but also promoted the expression of beclin1 and LC3, two autophagy-related proteins in the peri-infarct area. Additionally, OPN-induced neuroplasticity and autophagy were blocked by an integrin antagonist. CONCLUSION: Our findings indicate that OPN may enhance neuroplasticity via autophagy, providing a new therapeutic strategy for ischemic stroke.

11.
Front Cell Dev Biol ; 9: 698442, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368149

RESUMO

The liver is sensitive to aging because the risk of hepatopathy, including fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma, increases dramatically with age. Long non-coding RNAs (lncRNAs) are >200 nucleotides long and affect many pathological and physiological processes. A potential link was recently discovered between lncRNAs and liver aging; however, comprehensive and systematic research on this topic is still limited. In this study, the mouse liver genome-wide lncRNA profiles of 8-month-old SAMP8 and SAMR1 models were explored through deep RNA sequencing. A total of 605,801,688 clean reads were generated. Among the 2,182 identified lncRNAs, 28 were differentially expressed between SAMP8 and SAMR1 mice. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) surveys showed that these substantially dysregulated lncRNAs participated in liver aging from different aspects, such as lipid catabolic (GO: 0016042) and metabolic pathways. Further assessment was conducted on lncRNAs that are most likely to be involved in liver aging and related diseases, such as LNC_000027, LNC_000204E, NSMUST00000144661.1, and ENSMUST00000181906.1 acted on Ces1g. This study provided the first comprehensive dissection of lncRNA landscape in SAMP8 mouse liver. These lncRNAs could be exploited as potential targets for the molecular-based diagnosis and therapy of age-related liver diseases.

12.
Mater Sci Eng C Mater Biol Appl ; 128: 112354, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474902

RESUMO

In this paper, silk fibroin (SF) porous microcarriers containing strontium were constructed as injectable bone tissue engineering vehicles. The effects of SF concentration and strontium content on micromorphology, element distribution, strontium ion release and cellular behavior of the constructed microcarriers were investigated. The microcarriers with an open interconnected pore can be fabricated by controlling the concentration of SF. The strontium functionalized SF microcarriers showed the sustained release of strontium ion and allowed bone mesenchymal stem cells (BMSCs) to attach, proliferate and secrete extracellular matrix. Furthermore, the strontium functionalized SF microcarriers improved the osteogenic capability of BMSCs in vitro compared with those microcarriers without sustained release of strontium ion. This study presents a valuable approach to fabricate polymeric microcarriers with the capability of sustained release of strontium ion that show potential in bone tissue engineering applications.


Assuntos
Fibroínas , Diferenciação Celular , Osteogênese , Porosidade , Estrôncio , Engenharia Tecidual , Alicerces Teciduais
13.
Aging (Albany NY) ; 13(5): 7314-7329, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33639616

RESUMO

The pedunculopontine nucleus (PPN) undergoes significant anatomic and electrophysiological alterations in Parkinson's disease (PD), severely impacting locomotion. However, the effect of 6-hydroxydopamine (6-OHDA) lesion and levodopa (L-DOPA) therapy on the relationships between spike activities and local field potential (LFP) within the PPN is not well-understood. Synchronisation between the spike activity of individual neurones and LFP of neuronal ensembles is a crucial problem in the pathogenesis of PD. In this study, LFP signals and spikes in the PPN of rats in control, lesioned, and L-DOPA groups were recorded synchronously with a multi-unit electrical signal acquisition system and analysed for their coherence value, spike-field coherence, and phase-lock relationship. The spike-LFP relationship in the PPN was markedly increased in specific frequency bands because of the 6-OHDA lesion but differed depending on the animal locomotion state and neuronal type. L-DOPA had a limited therapeutic effect on the 6-OHDA-induced increase in the coherence value. Our study demonstrates that the PPN spike-LFP relationship is involved in the pathogenesis of PD and is critical for the effects of L-DOPA, providing a basis for the clinical treatment of refractory PD symptoms.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Levodopa/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Núcleo Tegmental Pedunculopontino/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Oxidopamina/farmacologia , Transtornos Parkinsonianos/fisiopatologia , Núcleo Tegmental Pedunculopontino/fisiopatologia , Ratos , Ratos Wistar
15.
Front Psychiatry ; 11: 295, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351418

RESUMO

Premenstrual dysphoric disorder (PMDD) is a severe form of premenstrual syndrome (PMS), a common mental health disturbance associated with several periodic psychological symptoms in women. Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for PMS/PMDD patients; however, side effects are inevitable, especially in long-term treatment. In previous studies, the natural compound paeonol in Moutan Cortex was found to play effective roles in central nervous system disorders with its anti-inflammatory, anti-oxidant, and neuroprotective effects. Consequently, we assume that paeonol might produce positive effects in the treatment of PMS/PMDD. In this study, the open-field test (OFT) and elevated plus maze (EPM) and light dark box (LDB) tests were performed in mice to determine the optimal dose of paeonol for treating anxiety. Then, paeonol was used to treat the progesterone withdrawal (PWD) and resident intruder paradigm (RIP) rat models of PMDD. Using these two reliable models, the OFT and EPM, LDB, and composite aggressive tests were performed to evaluate the effect of the drug on behavioural symptoms of PMDD. From the dosage screening results, the optimal anti-anxiety dose of paeonol was identified as 17.5 mg/kg/d for 7 days. With regard to the effect of paeonol on PMDD rat models, a significantly improvement was found in the behavioural symptoms, but the effective dose varied in different models. For the PWD model rats, treatment with 6.05 mg/kg paeonol could significantly improve anxiety and irritability, while that with 24.23 mg/kg paeonol resulted in anxiety-like effects in behavioural tests. In RIP model rats, treatment with 12.11 mg/kg paeonol demonstrated excellent effects in improving anxiety, particularly irritable emotional behaviour. In conclusion, our study indicates that paeonol is a potential therapeutic compound for PMS/PMDD; it is a drug option that helps establish dosage guidance for treatment of this condition.

16.
Front Neurosci ; 13: 1034, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616246

RESUMO

The pedunculopontine nucleus (PPN) is composed of a morphologically and neurochemically heterogeneous population of neurons, which is severely affected by Parkinson's disease (PD). However, the role of each subtype of neurons within the PPN in the pathophysiology of PD has not been completely elucidated. In this study, we present the discharge profiles of three classified subtypes of PPN neurons and their alterations after 6-hydroxydopamine (6-OHDA) lesion. Following 6-OHDA lesion, the spike timing of the Type II (GABAergic) and Type III (glutamatergic) neurons had phase-lock with the oscillations in the delta and beta band frequency range in the PPN, respectively. Morphological evidence has shown distinct alteration in three kinds of neurons after 6-OHDA lesion. These findings revealed that the changes in the firing characteristics of neurons in PPN in hemi-parkinsonism rats are closely associated with damaged neuronal morphology, which would make contributions to the divergence of dysfunctions in Parkinsonism.

17.
Neuroscience ; 404: 470-483, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30710670

RESUMO

The pedunculopontine nucleus (PPN) shows altered electrophysiological and anatomic characteristics in Parkinson's disease (PD), but little is known about the effect of 6-hydroxydopamine (6-OHDA) lesion and levodopa (L-DOPA) therapy on the relationship between spike and local field potential (LFP) activities in the PPN and motor cortex. Aiming to investigate this, synchronous spike and LFP signals in the PPN and primary motor cortex (M1) were recorded. The spike-LFP relationship was evaluated using coherence analysis, phase-lock and spike-field coherence (SFC). The results suggested that 6-OHDA lesion had a significant effect on the spike-LFP relationship between the PPN and M1 in rats under a rest or locomotion state. The significantly altered frequency bands varied across different neuron types and animal activity states. In addition, the altered coherence values between PPN spike and M1 LFP were refractory to long-term L-DOPA therapy although all other changes could be reversed by this drug treatment. All results provided evidence of the spike-LFP relationship between the PPN and M1 in PD, revealing some network mechanisms of the cortico-basal ganglia circuitry and PPN, which might be an underlying candidate for PD pathophysiology and therapy.


Assuntos
Potenciais de Ação/fisiologia , Modelos Animais de Doenças , Córtex Motor/fisiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Núcleo Tegmental Pedunculopontino/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Levodopa/farmacologia , Levodopa/uso terapêutico , Masculino , Córtex Motor/efeitos dos fármacos , Oxidopamina/toxicidade , Transtornos Parkinsonianos/tratamento farmacológico , Núcleo Tegmental Pedunculopontino/efeitos dos fármacos , Ratos , Ratos Wistar
18.
Medicine (Baltimore) ; 97(34): e11595, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30142753

RESUMO

In this study, we tried to describe the characteristics of pain and explore the association between the incidence of pain and abnormal laboratory test results in patients during the acute phase of Guillain-Barré syndrome (GBS).This retrospective cohort study enrolled 252 patients with GBS who were in the acute phase of the disease. We collected data regarding the location and type of pain, the onset time, clinical variables and laboratory tests, including the levels of uric acid (UA), albumin, cerebrospinal fluid protein (CSFP), cerebrospinal fluid glucose (CSFG), fasting glucose upon admission, and blood creatinine. The pain descriptors were compared to the severity of disease and laboratory examination results.Around 34.5% of the patients reported pain during the acute phase of GBS. Pain was negatively correlated with the disease severity during the acute phase. In total, 29 of the 87 (33.3%) patients reported pain during the 2 weeks preceding the onset of weakness. The concentration of CSFP was positively associated with the incidence of pain, while the concentrations of UA and albumin were not correlated with the incidence of pain.We found that 33.3% of the GBS patients experienced pain within 2 weeks of onset, and the pain was positively associated with CSFP concentration but was not correlated with disease severity.


Assuntos
Síndrome de Guillain-Barré/complicações , Dor/epidemiologia , Doença Aguda , Adulto , Idoso , Biomarcadores/metabolismo , Proteínas do Líquido Cefalorraquidiano/metabolismo , Feminino , Síndrome de Guillain-Barré/metabolismo , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Índice de Gravidade de Doença
19.
Gastroenterol Res Pract ; 2016: 4618672, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26843857

RESUMO

Background. Until now, the effect of arginine vasopressin (AVP) in the DMV on gastric motility and the possible modulating pathway between the DMV and the gastrointestinal system remain poorly understood. Objectives. We aimed to explore the role of AVP in the DMV in regulating gastric motility and the possible central and peripheral pathways. Material and Methods. Firstly, we microinjected different doses of AVP into the DMV and investigated its effects on gastric motility in rats. Then, the possible central and peripheral pathways that regulate gastric motility were also discussed by microinjecting SR49059 (a specific AVP receptor antagonist) into the DMV and intravenous injection of hexamethonium (a specific neuronal nicotinic cholinergic receptor antagonist) before AVP microinjection. Results. Following microinjection of AVP (180 pmol and 18 pmol) into the DMV, the gastric motility (including total amplitude, total duration, and motility index of gastric contraction) was significantly inhibited (P < 0.05). Moreover, the inhibitory effect of AVP (180 pmol) on gastric motility could be blocked completely by both SR49059 (320 pmol) and hexamethonium (8 µmol). Conclusions. It is concluded that AVP inhibits the gastric motility by acting on the specific AVP receptor in the DMV, with the potential involvement of the parasympathetic preganglionic cholinergic fibers.

20.
Behav Brain Res ; 305: 57-64, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26924016

RESUMO

The pedunculopontine nucleus (PPN) is a new deep brain stimulation target for treating Parkinson's disease (PD). But the alterations of the PPN electrophysiological activities in PD are still debated. To investigate these potential alterations, extracellular single unit and local field potential (LFP) activities in the PPN were recorded in unilateral hemispheric 6-hydroxydopamine (6-OHDA) lesioned rats and in control rats, respectively. The spike activity results revealed two types of neurons (Type I and Type II) with distinct electrophysiological characteristics in the PPN. Both types of neurons had increased firing rate and changed firing pattern in lesioned rats when compared to control rats. Specifically, Type II neurons showed an increased firing rate when the rat state was switched from rest to locomotion. The LFP results demonstrated that lesioned rats had lower LFP power at 0.7-12Hz and higher power at 12-30Hz than did control animals in either resting or locomotor state. These findings provide a better understanding of the effects of 6-OHDA lesion on neuronal activities in the PPN and also provide a proof of the link between this structure and locomotion, which contributes to better understanding the mechanisms of the PPN functioning in the pathophysiology of PD.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Doença de Parkinson/patologia , Núcleo Tegmental Pedunculopontino/patologia , Potenciais de Ação/efeitos dos fármacos , Adrenérgicos/toxicidade , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Masculino , Feixe Prosencefálico Mediano/lesões , Neurônios/efeitos dos fármacos , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/fisiopatologia , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA