Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(4): 2006-2014, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909354

RESUMO

BACKGROUND: Peanut is a significant source of nutrition and a valuable oilseed crop. It is also a serious allergy source, which poses a threat to 1.1% of the population. This study aimed to screen lactic acid bacteria (LAB) with the capacity to alleviate peanut allergenicity and exhibit anti-allergic properties. RESULT: The results show that LAB can make use of substances in peanuts to reduce the pH of peanut milk from 6.603 to 3.593-4.500 by acid production and that it can utilize the protein in peanuts to reduce the allergenic content (especially Ara h 1) and improve biological activity in peanut pulp. The content of Ara h 1 peanut-sensitizing protein was reduced by 74.65% after fermentation. The protein extracted from fermented peanut pulp is more readily digestible by gastrointestinal juices. The inhibitory activity assay of hyaluronidase (an enzyme with strong correlation to allergy) increased from 46.65% to a maximum of 90.57% to reveal that LAB fermentation of peanut pulp exhibited a robust anti-allergic response. CONCLUSION: The strains identified in this study exhibited the ability to mitigate peanut allergenicity partially and to possess potential anti-allergic properties. Lactobacillus plantarum P1 and Lactobacillus salivarius C24 were identified as the most promising strains and were selected for further research. © 2023 Society of Chemical Industry.


Assuntos
Antialérgicos , Lactobacillales , Hipersensibilidade a Amendoim , Hipersensibilidade a Amendoim/prevenção & controle , Antígenos de Plantas/metabolismo , Antialérgicos/farmacologia , Lactobacillus/metabolismo , Proteínas de Plantas/metabolismo , Arachis/química , Alérgenos/química , Lactobacillales/metabolismo
2.
Microb Pathog ; 181: 106216, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37391100

RESUMO

The subject of this study was to screen lactic acid bacteria (LAB) with pathogen translocation inhibition and investigate the potential inhibition mechanism of it. Pathogens colonized in the intestine could cross the intestinal barrier to access blood circulation, causing severe complications. This study aimed to screen LAB with favorable inhibitory effects on the translocation of enterinvasive Escherichia coli CMCC44305 (E. coli) and Cronobacter sakazakii CMCC45401 (C. sakazakii), which were two common intestinal opportunistic pathogens. After an elaborate screening procedure including adhesion, antibacterial, and translocation assay, Limosilactobacillus fermentum NCU003089 (L. fermentum NCU3089) and Lactiplantibacillus plantarum NCU0011261 (L. plantarum NCU1261) were found to inhibit 58.38% and 66.85% of pathogen translocation, respectively. Subsequently, LAB pre-treatment suppressed the decline in TEER of Caco-2 monolayers caused by pathogens. Meanwhile, L. fermentum NCU3089 significantly inhibited claudin-1, ZO-1, and JAM-1 degradation caused by E. coli, and L. plantarum NCU1261 markedly reduced claudin-1 degradation caused by C. sakazakii. Also, the two LAB strains significantly decreased TNF-α level. In addition, L. fermentum NCU3089 but not L. plantarum NCU1261 tolerated well in the gastrointestinal fluids, and they were both sensitive or intermediate to nine common clinical antibiotics without hemolytic activity. In short, the two LAB strains could inhibit pathogen translocation by competing for adhesion sites, secreting antibacterial substances, reducing inflammatory cytokines levels, and maintaining intestinal barrier integrity. This study provided a feasible solution to prevent pathogen infection and translocation, and the two LAB strains were safe and had potential in food and pharmaceutical applications.


Assuntos
Cronobacter sakazakii , Lactobacillus plantarum , Limosilactobacillus fermentum , Probióticos , Humanos , Escherichia coli , Células CACO-2 , Claudina-1/metabolismo , Lactobacillus plantarum/metabolismo , Probióticos/farmacologia , Antibacterianos/metabolismo
3.
J Sci Food Agric ; 103(11): 5588-5599, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37066671

RESUMO

BACKGROUND: Solid-state fermentation (SSF) is a general approach for preparing food and feed, which not only improves nutrition but also provides prebiotics and metabolites. Although many studies have been conducted on the effects of fermentation on feed substrate, the dynamics of microbiota and metabolites in SSF remain unclear. Here, high-throughput sequencing combined with gas chromatography-quadrupole time-of-flight mass spectrometry was used to evaluate the dynamic changes of solid fermented soybean meal and corn mixed matrix inoculated with Bacillus pumilus and Limosilactobacillus fermentum. RESULTS: Generally, inoculated bacteria rapidly proliferated, accompanied by the degradation of macromolecular proteins and an increase in the content of small peptides, trichloroacetic acid-soluble protein, free amino acids and organic acids. Bacillus, Lactobacillus and Enterococcus dominated the whole fermentation process. 389 non-volatile metabolites and 182 volatile metabolites were identified, including amino acids, organic acids, ketones, aldehydes, furans and pyrazine. Typical non-volatile metabolites such as lactic acid, 4-aminobutanoic acid, l-glutamic acid, d-arabinose and volatile metabolites such as 4-ethyl-2-methoxyphenol, 4-penten-2-ol, 2-pentanone, 2-ethylfuran, 2-methylhexanoic acid and butanoic acid-ethyl ester were significantly increased in two-stage solid fermentation. However, some adverse metabolites were also produced, such as oxalic acid, acetic acid, tyramine and n-butylamine, which may affect the quality of fermented feed. Sixteen genera were significantly correlated with differential non-volatile metabolites, while 11 genera were significantly correlated with differential volatile metabolites. CONCLUSION: These results characterized the dynamic changes in the process of two-stage solid-state fermentation with Bacillus pumilus and Limosilactobacillus fermentum and provided a potential reference for additional intervention on improving the effectiveness and efficiency of solid-state fermentation of feed in the future. © 2023 Society of Chemical Industry.


Assuntos
Bacillus pumilus , Limosilactobacillus fermentum , Fermentação , Bacillus pumilus/metabolismo , Zea mays/metabolismo , Farinha , Bactérias/metabolismo , Aminoácidos/metabolismo
4.
Crit Rev Food Sci Nutr ; : 1-14, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35866501

RESUMO

Modern society is increasingly attracted with safe, natural, and additive-free food products, that gives preference to bacteriocins produced by General Recognized as Safe bacteria as a food preservative. Bacteriocins have been reported to be effective in extending shelf life of diverse foods such as meats, dairy products, wine, juice, and fruits and vegetables, whereas commercialized bacteriocins remain only nisin, pediocin, and Micocin. It is important that commercialized preservatives undergo an easy-to-handle manufacturing while maintaining high efficacy. Limited application of bacteriocins is most often caused by the absence of legislatives for use, low production, high cost and complicated purification process, reduced efficiency in the complex food matrix and insufficiently defined mechanism of action. Accordingly, this review provides an overview of bacteriocins, in relation to production stimulation, general purification scheme, impact of food matrix on bacteriocin effectiveness, and collaborative technology to improve bacteriocin performances. It is worth to note that purification and performance improvement technology remain the two challenging tasks in promoting bacteriocins as a widely used bio-preservative. Furthermore, this review for the first time divides bacteriocin receptors into specific classes (class I, II, III) and nonspecific class, to provide a basis for an in-depth understanding of the mechanism of action.

5.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36382653

RESUMO

Polysaccharides are biomacromolecular widely applied in the food industry, as gelling agents, thickeners and health supplements. As hydrophobic groups, acetyls provide amphiphilicity to polysaccharides with numerous hydroxyl groups, which greatly expand the presence of polysaccharides in organic organisms and various chemical environments. Acetylation could result in diverseness and promotion of the structure of polysaccharides, which improve the physicochemical properties and biological activities. High efficient and environmentally friendly access to acetylated derivatives of different polysaccharides is being explored. This review discusses and summarizes acetylated polysaccharides in terms of synthetic methods, physicochemical properties and biological activities and emphasizes the structure-effect relationships introduced by acetyl groups to reveal the potential mechanism of acetylated polysaccharides. Acetyls with different contents and substitution sites could change the molecular weight, monosaccharide composition and spatial architecture of polysaccharides, resulting in differences among properties such as water solubility, emulsification and crystallinity. Coupled with acetyls, polysaccharides have increased antioxidant, immunomodulatory, antitumor, and pro-prebiotic capacities. In addition, their possible applications have also been discussed in green food materials, bioactive ingredient carriers and functional food products, indicating that acetylated polysaccharides hold a clear vision in food health and industrial development.

6.
Food Microbiol ; 98: 103573, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33875193

RESUMO

Chinese Sichuan Paocai (CSP) is one of the world's best-known fermented vegetables with a large presence in the Chinese market. The dynamic microbial community is the main contributor to Paocai fermentation. However, little is known about the ecological distribution and functional importance of these community members. In this study, metatranscriptomics was used to comprehensively explore the active microbial community members and key transcripts with significant functions in the Paocai fermentation process. Enterobacter, Leuconostoc, and Lactobacillus dominated the three-fermentation stages (Pre-, Mid- and Lat-), respectively. Carbon metabolism was the most abundant pathway. GH (glycoside hydrolase) and GT (lycosyl transferase) were the two most highly expressed carbohydrate-active enzymes. The most highly differentially expressed genes were grouped in the biosynthesis of amino acids, followed by glycolysis. Meta-pathways in the Sichuan Paocai fermentation ecosystem were reconstructed, Lactobacillaceae and Enterobacteriaceae were the two most important metabolic contributors. In addition, the nrfA and nirB were two genes referred to distinct nitrite reductase enzymes and 9 specialized genes, such as eclo, ron and ent were expressed to produce autoinducer 2 (AI-2) kinase in response to population density. The present study revealed functional enzymes and meta-pathways of the active microbial communities, which provide a deeper understanding of their contribution to CSP products.


Assuntos
Brassica/microbiologia , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/metabolismo , Alimentos Fermentados/microbiologia , Lactobacillaceae/isolamento & purificação , Microbiota , Verduras/microbiologia , Brassica/metabolismo , China , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Fermentação , Microbiologia de Alimentos , Lactobacillaceae/classificação , Lactobacillaceae/genética , Lactobacillaceae/metabolismo , Metagenômica , Transcriptoma , Verduras/metabolismo
7.
Genomics ; 112(1): 703-711, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31078715

RESUMO

Lactobacillus plantarum NCU116 is the first sequenced strain derived from traditional Chinese sauerkraut (TCS). Since NCU116 manifested outstanding probiotic effects in vitro and in vivo, it is crucial to comprehend a clear genetic background for NCU116. Functional re-annotation and comparative analysis were performed to excavate the unique and representative genes in NCU116, in order to investigate its metabolic preference and adaptive mechanism. Horizontal gene transfer (HGT) seemed to occur frequently, which endows NCU116 with a strong ability to transport carbohydrates, as a strain-specific fructose/mannose-PTS was identified, and opu and osmC coding genes were retrieved as NCU116-specific. In addition, a strain-specific type I R/M system and several prophage loci were found in NCU116, which could play vital roles in self-defense mechanism. Pathways of bacterial metabolism on plant-related substrates fermentation were then generated by reconstruction of associated pathways. Moreover, a unique potential plantaricin-producing locus with high homology to that of JDM1 was defined in the genome of NCU116, which could be very important for the preservation of fermented-food. Our results would provide critical basis for the application of NCU116 in food and pharmaceuticals industries.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Loci Gênicos , Genoma Bacteriano , Lactobacillus plantarum/genética , Genômica
8.
Genomics ; 112(5): 3579-3587, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32320822

RESUMO

Lactic acid bacteria (LAB) play a significant role in food industry and artisan fermented-food. Most of the applicable LABs were commonly obtained from natural fermented food or human gut. And Lactobacillus plantarum NCU116 was screened from a LAB-dominated traditional Chinese sauerkraut (TCS). In order to comprehend the interaction between NCU116 and its environments, comparative genomics were performed to identify genes involved in extracellular protein biosynthesis and secretion. Four secretory pathways were identified, including Sec and FPE pathways, holins and efflux ABC transporter system. Then 348 potential secretory proteins were identified, including 11 alpha-amylases responsible for degradation of macromolecules, and 8 mucus binding proteins which attribute to adherence to intestine epithelium. Besides, EPS clusters of NCU116 (EPS116) were identified and analyzed by comparing to other strains, which suggested a novel genotype of EPS clusters. These findings could be critical to extend the application of NCU116 in food and pharmaceuticals industries.


Assuntos
Proteínas de Bactérias/genética , Lactobacillus plantarum/genética , Polissacarídeos Bacterianos/biossíntese , Adesinas Bacterianas/genética , Transporte Biológico , Genoma Bacteriano , Genômica , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiologia , Proteínas de Membrana Transportadoras/genética , Via Secretória/genética
9.
Molecules ; 26(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069493

RESUMO

Arabinoxylan (HBAX-60) was fractioned from alkaline-extracted arabinoxylan (HBAX) in the whole grain of hull-less barley (Hordeum vulgare L. var. nudum Hook. f. Poaceae) by 60% ethanol precipitation, which was studied for physicochemical properties and structure elucidation. Highly purified HBAX-60 mainly composed of arabinose (40.7%) and xylose (59.3%) was created. The methylation and NMR analysis of HBAX-60 indicated that a low-branched ß-(1→4)-linked xylan backbone possessed un-substituted (1,4-linked ß-Xylp, 36.2%), mono-substituted (ß-1,3,4-linked Xylp, 5.9%), and di-substituted (1,2,3,4-linked ß-Xylp, 12.1%) xylose units as the main chains, though other residues (α-Araf-(1→, ß-Xylp-(1→, α-Araf-(1→3)-α-Araf-(1→ or ß-Xylp-(1→3)-α-Araf-(1→) were also determined. Additionally, HBAX-60 exhibited random coil conformation in a 0.1 M NaNO3 solution. This work provides the properties and structural basis of the hull-less barley-derived arabinoxylan, which facilitates further research for exploring the structure-function relationship and application of arabinoxylan from hull-less barley.


Assuntos
Hordeum/química , Xilanos/química , Xilanos/isolamento & purificação , Espectroscopia de Ressonância Magnética/métodos , Metilação , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
10.
Arch Microbiol ; 202(5): 1241-1250, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32112122

RESUMO

Genetic stability of bacterium as a starter culture is vital for product quality in fermentation industry. The commercial strain Lactobacillus plantarum NCU116 widely used in fruit and vegetable fermentation was induced with various stressors to investigate the stability of potential prophages. PHAge Search Tool (PHAST) identified three potential prophages in bacterial genome. By spectrophotometric analysis, mitomycin C (MMC), lactic acid, and bile salt were found to inhibit the growth of L. plantarum NCU116 while ethanol and hydrogen peroxide had no notable impacts. Transcriptions of four phage-synthesizing genes (phaR, phacap, phaada, phatail) and four phage-resistant genes (cas116, helR, hsd1, hsd2) under stressors were investigated by quantitative reverse transcription PCR. MMC was found to most significantly upregulated transcriptions of phage-synthesizing genes, followed by lactic acid and bile salt. By transmission electron microscopy, no virus particles from the lysates of strain NCU116 treated by MMC were observed, corresponding to the result that no phage nucleic acids could be extracted from the supernatants of strain NCU116 treated by MMC. This study suggested that no prophages could be induced from L. plantarum NCU116 by strong inducer MMC, indicating its genetic stability, which supports the comprehensive application of strain NCU116 in industry without causing fermentation failure.


Assuntos
Lactobacillus plantarum/virologia , Prófagos/fisiologia , Estresse Fisiológico/fisiologia , Antibióticos Antineoplásicos/farmacologia , Genoma Bacteriano/efeitos dos fármacos , Genoma Bacteriano/genética , Instabilidade Genômica/efeitos dos fármacos , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/genética , Mitomicina/farmacologia
11.
J Sci Food Agric ; 100(14): 5197-5206, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32530042

RESUMO

BACKGROUND: Suansun is a traditional salt-free fermented bamboo shoot product that has been widely consumed as a cooking ingredient in south China for centuries. The aim of this study was to evaluate and compare the microbial and metabolic diversity in samples of two kinds of suansun, namely Guangdong suansun (GD) and Yunnan suansun (YN), using high-throughput sequencing (HTS) and headspace solid-phase microextraction-gas chromatograph-mass spectrometry (HS-SPME/GC-MS), respectively, and then to assess the influence of environmental factors on the microbial communities. RESULTS: The results showed that Lactobacillus and Serratia were the most abundant bacterial genera in both the GD and YN groups. For the fungi, Pichia, Candida, and Debaryomyces were the major genera in the GD group, whereas Pichia and Zygosaccharomyces were the dominant genera in the YN group. The canonical correlation analysis (CCA) results demonstrated that three environmental factors - temperature, longitude, and altitude - play a more important role in affecting the microbial community composition of suansun than physical and chemical factors. The fugal community composition was more influenced by environmental factors than the bacterial community. The volatile profile of the GD group differed from that of the YN group, and the difference was mainly reflected in the relative alcohol, aldehyde, ester, and aromatic compound content. CONCLUSIONS: This study provided insights into the microbial and metabolic profiles of suansun products. The findings might be useful for the improvement and standardization of suansun production. © 2020 Society of Chemical Industry.


Assuntos
Bactérias/isolamento & purificação , Alimentos Fermentados/microbiologia , Fungos/isolamento & purificação , Microbiota , Poaceae/microbiologia , Compostos Orgânicos Voláteis/química , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , China , Fermentação , Alimentos Fermentados/análise , Microbiologia de Alimentos , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Poaceae/química , Microextração em Fase Sólida , Verduras/química , Verduras/microbiologia , Compostos Orgânicos Voláteis/isolamento & purificação , Compostos Orgânicos Voláteis/metabolismo
12.
Crit Rev Food Sci Nutr ; 59(sup1): S96-S115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30421988

RESUMO

Hericium erinaceus (H. erinaceus), an edible mushroom with medicinal value, has a long history of usage in China and other oriental countries. Polysaccharide is supposed to be one of the major bioactive compounds in H. erinaceus, which possesses immunomodulating, anti-cancer, antioxidant, gastroprotection and intestinal health promotion, neuroprotective, hepatoprotective, antihpyerglycemic and hypolipidemic activities. In this review, the current advancements on extraction, purification, structural characteristics and biological activities of polysaccharide from different sources (fruiting body, mycelium and culture broth) of H. erinaceus were summarized. Among these aspects, summaries of the structural characteristics focused on the purified polysaccharides. Meanwhile, comparisons on the structural characteristics among the purified polysaccharides obtained from above three sources were made. Moreover, their biological activities were introduced on the basis of in vivo and in vitro experiments, and some possible action mechanisms were listed. Furthermore, the structure-activity relationship of the polysaccharide was discussed. New perspectives for the future work of Hericium erinaceus polysaccharide were also proposed. HIGHLIGHTS Extraction, purification, structural characteristics and biological activities of Hericium erinaceus polysaccharide (HEP) were summarized. Structural characteristics of the purified polysaccharides from different sources (fruiting body, mycelium and culture broth) of Hericium erinaceus were summarized and compared. Structure-activity relationship of HEP was discussed, and new perspectives for the future work of this polysaccharide were proposed.


Assuntos
Basidiomycota/química , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Agaricales/química , Animais , Antineoplásicos , Antioxidantes , China , Carpóforos/química , Promoção da Saúde , Humanos , Imunomodulação , Intestinos , Peso Molecular , Fármacos Neuroprotetores
13.
Food Microbiol ; 83: 141-149, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31202405

RESUMO

This study aimed to investigate bacterial diversity in paocai and Chinese spicy cabbage and compare the microbial communities using high-throughput sequencing. Bacteria representing 26 phyla, 480 genera and 338 species were observed in these Chinese fermented vegetables. Firmicutes and Proteobacteria were the main phyla observed in both paocai and Chinese spicy cabbage. Additionally, Lactobacillus, Pediococcus, Serratia, Stenotrophomonas and Weissella were the major genera observed in both paocai and Chinese spicy cabbage. Overall, the relative abundances of Lactobacillus, Pediococcus and Weissella in Chinese spicy cabbage were much higher than those in paocai, but the proportions of Stenotrophomonas and Serratia in Chinese spicy cabbage were less than those in paocai. The results showed that the composition of the microbial community in Chinese spicy cabbage was positively correlated with total titratable acidity (TA), lactic acid and acetic acid contents but was negatively correlated with salinity. In contrast, the composition of the microbial community in paocai was negatively correlated with TA, lactic acid and acetic acid contents but was positively correlated with salinity. This study provides insights into the relationship between bacterial profiles and environmental factors in Chinese spicy cabbage and paocai, and its findings will aid in guiding future research on fermented vegetables.


Assuntos
Bactérias/classificação , Brassica/microbiologia , Alimentos Fermentados/microbiologia , Microbiologia de Alimentos , Ácido Acético/análise , Bactérias/isolamento & purificação , Fermentação , Sequenciamento de Nucleotídeos em Larga Escala , Ácido Láctico/análise , Microbiota , RNA Ribossômico 16S/genética
14.
Molecules ; 24(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627423

RESUMO

Myricetin (Myr) is a phytochemical with many functional properties. However, its hydrophobicity, low bioavailability, and stability limit its application. In this study, octadecanoate oat ß-glucan (OGE) was synthesized and gained recognition as a self-assembled micelle forming a polymer with a critical micelle concentration (CMC) of 59.4 µg/mL. The Myr-loaded OGE micelle was then prepared and characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), X-ray diffractometer (XRD), and Fourier-transform infrared spectroscopy (FT-IR) spectra. The water solubility of Myr was greatly enhanced by forming the Myr/OGE inclusion complex. Consequently, compared to free Myr, the retention of Myr in Myr-loaded OGE micelle was effectively increased during the intestinal digestion phase, and its antioxidant activity was also improved. Overall, our findings demonstrated the potential applications of OGE polymer for the development of prospective micelle in health food, cosmetics, and pharmaceutical fields because they can aid in the delivery of hydrophobic functional compounds like Myr.


Assuntos
Antioxidantes/química , Portadores de Fármacos , Flavonoides/química , beta-Glucanas/química , Materiais Biomiméticos/química , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Composição de Medicamentos/métodos , Suco Gástrico/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Radical Hidroxila/antagonistas & inibidores , Radical Hidroxila/química , Micelas , Estrutura Molecular , Picratos/antagonistas & inibidores , Picratos/química , Solubilidade , Água/química
15.
J Sci Food Agric ; 99(7): 3391-3397, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30609036

RESUMO

BACKGROUND: Chinese jiang-shui is fermented food without salt. In consideration of the few studies of the bacterial community and dynamics of jiang-shui fermentation, the aim of this study was to investigate the microbial diversity and dynamics of jiang-shui fermentation using high-throughput sequencing (HTS), denaturing gradient gel electrophoresis (DGGE) and the culture-dependent method. RESULTS: The culture-dependent method showed that pathogenic bacteria (Staphylococcus aureus, Salmonella and Escherichia coli) and yeast mainly existed in the early stage and lactic acid bacteria dominated until the end stage. HTS and DGGE revealed that Serratia marcescens, Serratia sp., Lactobacillus curvatus, Lactococcus lactis, uncultured bacterium and Bacillus thuringiensis started the fermentation, followed by the middle stage with Lactococcus lactis, Weissella sp. and Bacillus arthracis as the predominant species. The end stage was characterized with Lactobacillus pentosus, Weissella cibaria and Weissella sp. as the major bacteria. CONCLUSIONS: The results showed that genera Serratia, Lactococcus, Weissella and Lactobacillus dominated the whole process of jiang-shui fermentation. This study provided a good analysis of the bacterial changes of jiang-shui fermentation, and future studies should consider the relationships among the sensory characteristics, microbial communities and metabolites. © 2019 Society of Chemical Industry.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodiversidade , Alimentos Fermentados/microbiologia , Bactérias/genética , China , Eletroforese em Gel de Gradiente Desnaturante , Fermentação , Alimentos Fermentados/análise , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
16.
Planta Med ; 84(14): 1022-1029, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29649842

RESUMO

Isoflavones have been reported to stimulate muscle growth. The aim of this in vitro study was to examine anabolic activity and associated molecular mechanisms of a soy extract (SoyEx), isoflavone aglycones, and a mixture simulating the composition of SoyEx in C2C12 myotubes. C2C12 cells were differentiated into myotubes. The effects of SoyEx, genistein, daidzein, glycitein, and the mixture of genistein-daidzein-glycitein (Mix) on myotube diameter and number were determined. In addition, the expression of genes and proteins associated with anabolic activity was analyzed. Treatment with SoyEx, genistein, and Mix led to a significant increase of myotube diameter and an increase of the number of myotubes per area compared to the control cell. The increase of diameter by SoyEx was antagonized by an antiestrogen, not by an antiandrogen. Furthermore, gene expressions of insulin growth factor (IGF)-1 and its receptor (IGF-1R), as well as protein expression of myosin heavy chain (MHC), were significantly increased by SoyEx, genistein, and Mix. The effects induced by genistein and Mix were comparable to SoyEx. In conclusion, SoyEx displays an anabolic activity in C2C12 myotubes by binding to ER and modulating IGF-1 and MHC expression. Our studies with isoflavone aglycones and Mix indicate that the isoflavone aglycone with the highest anabolic bioactivity in SoyEx is genistein.


Assuntos
Anabolizantes/farmacologia , Glycine max/química , Isoflavonas/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Quimioterapia Combinada , Genisteína/administração & dosagem , Genisteína/farmacologia , Técnicas In Vitro , Fator de Crescimento Insulin-Like I/metabolismo , Isoflavonas/administração & dosagem , Camundongos , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Extratos Vegetais/administração & dosagem , Receptor IGF Tipo 1/metabolismo
17.
Mar Drugs ; 16(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30469516

RESUMO

Fucoidan, the complex fucose-containing sulphated polysaccharide varies considerably in structure, composition, and bioactivity, depending on the source, species, seasonality, and extraction method. In this study, we examined five fucoidans extracted from the same seaweed species Undaria pinnatifida but from different geological locations, and compared them to the laboratory-grade fucoidan from Sigma (S). The five products differed in molecular composition. The amount of over 2 kDa low molecular weight fraction (LMWF) of the New Zealand crude fucoidan (S1) was larger than that of S, and this fraction was unique, compared to the other four fucoidans. The difference of molecular compositions between S and S1 explained our previous observation that S1 exhibited different anticancer profile in some cancer cell lines, compared with S. Since we observed this unique LMWF, we compared the cytotoxic effects of a LMWF and a high molecular weight fucoidan (HMWF) in two breast cancer cell lines-MCF-7 and MDA-MB-231. Results indicated that the molecular weight is a critical factor in determining the anti-cancer potential of fucoidan, from the New Zealand U. pinnatifida, as the LMWF exhibited a dose-dependent inhibition on the proliferation of breast cancer cells, significantly better than the HMWF, in both cell lines. A time-dependent inhibition was only observed in the MCF-7. Induction of caspase-dependent apoptosis was observed in the MDA-MB-231 cells, through the intrinsic apoptosis pathway alone, or with the extrinsic pathway. LMWF stimulated a dose-dependent NOS activation in the MDA-MB-231 cells. In conclusion, the fucoidan extracted from the New Zealand U. pinnatifida contains a unique LMWF, which could effectively inhibit the growth of breast cancer cell lines. Therefore, the LMWF from New Zealand U. pinnatifida could be used as a supplement cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Polissacarídeos/farmacologia , Alga Marinha/química , Undaria/química , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Estrutura Molecular , Peso Molecular , Nova Zelândia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos
18.
Int J Mol Sci ; 19(2)2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29419740

RESUMO

The imbalance between cell proliferation and apoptosis can lead to tumor progression, causing oncogenic transformation, abnormal cell proliferation and cell apoptosis suppression. Tea polysaccharide (TPS) is the major bioactive component in green tea, it has showed antioxidant, antitumor and anti-inflammatory bioactivities. In this study, the chemoprophylaxis effects of TPS on colitis-associated colon carcinogenesis, especially the cell apoptosis activation and inhibition effects on cell proliferation and invasion were analyzed. The azoxymethane/dextran sulfate sodium (AOM/DSS) was used to induce the colorectal carcinogenesis in mice. Results showed that the tumor incidence was reduced in TPS-treated AOM/DSS mice compared to AOM/DSS mice. TUNEL staining and Ki-67 immunohistochemistry staining showed that the TPS treatment increased significantly the cell apoptosis and decreased cell proliferation among AOM/DSS mice. Furthermore, TPS reduced the expression levels of the cell cycle protein cyclin D1, matrix metalloproteinase (MMP)-2, and MMP-9. In addition, in vitro studies showed that TPS, suppressed the proliferation and invasion of the mouse colon cancer cells. Overall, our findings demonstrated that TPS could be a potential agent in the treatment and/or prevention of colon tumor, which promoted the apoptosis and suppressed the proliferation and invasion of the mouse colon cancer cells via arresting cell cycle progression.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Colite/complicações , Neoplasias do Colo/etiologia , Neoplasias do Colo/prevenção & controle , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Chá/química , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colite/genética , Colite/metabolismo , Colite/patologia , Neoplasias do Colo/patologia , Ciclina D1/genética , Ciclina D1/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos
19.
Pak J Pharm Sci ; 31(4): 1333-1339, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30033417

RESUMO

The total phenolic content, flavonoid content, in vitro xanthine oxidase (XOD) inhibitory activity and antioxidant activity (AA) of Eucommia ulmoides Oliver leaf extracts were investigated. The AA investigations included 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, ß-carotene/linoleic acid bleaching assay and oxygen radical absorbance capacity (ORAC) test. The ethyl acetate fraction (EE) showed the highest AA and xanthine oxidase inhibitory activity. Whilst the lowest 50% inhibition (IC50) value of this fraction for DPPH free radical scavenging was 0.045mg/mL, its highest ORAC value was 10.57 µmol TE/mg. The highest inhibition rate against linoleic acid oxidation observed was 69.41%, and the lowest IC50 value for xanthine oxidase activity inhibition was 2.47mg/mL. These results show that E. ulmoides leaf extract is a promising source of natural antioxidants because it contains high contents of bioactive compounds, including chlorogenic acid, rutin, hyperin and astragalin, as detected by high-performance liquid chromatography coupled to HPLC-DAD-ESI-MS.


Assuntos
Antioxidantes/isolamento & purificação , Medicamentos de Ervas Chinesas/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Eucommiaceae/química , Xantina Oxidase/antagonistas & inibidores , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Ácido Linoleico/química , Oxirredução , Picratos/química , Folhas de Planta/química , beta Caroteno/química
20.
Infect Immun ; 85(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28373356

RESUMO

Clostridium perfringens encodes at least two different quorum sensing (QS) systems, the Agr-like and LuxS, and recent studies have highlighted their importance in the regulation of toxin production and virulence. The role of QS in the pathogenesis of necrotic enteritis (NE) in poultry and the regulation of NetB, the key toxin involved, has not yet been investigated. We have generated isogenic agrB-null and complemented strains from parent strain CP1 and demonstrated that the virulence of the agrB-null mutant was strongly attenuated in a chicken NE model system and restored by complementation. The production of NetB, a key NE-associated toxin, was dramatically reduced in the agrB mutant at both the transcriptional and protein levels, though not in a luxS mutant. Transwell assays confirmed that the Agr-like QS system controls NetB production through a diffusible signal. Global gene expression analysis of the agrB mutant identified additional genes modulated by Agr-like QS, including operons related to phospholipid metabolism and adherence, which may also play a role in NE pathogenesis. This study provides the first evidence that the Agr-like QS system is critical for NE pathogenesis and identifies a number of Agr-regulated genes, most notably netB, that are potentially involved in mediating its effects. The Agr-like QS system thus may serve as a target for developing novel interventions to prevent NE in chickens.


Assuntos
Toxinas Bacterianas/metabolismo , Infecções por Clostridium/veterinária , Clostridium perfringens/patogenicidade , Enterite/veterinária , Enterotoxinas/metabolismo , Doenças das Aves Domésticas/microbiologia , Percepção de Quorum , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Linhagem Celular Tumoral , Galinhas/microbiologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Enterite/microbiologia , Enterite/patologia , Enterotoxinas/genética , Regulação Bacteriana da Expressão Gênica , Masculino , Necrose , Óperon , Doenças das Aves Domésticas/patologia , Virulência , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA