Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(10): 3545-3562, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36121453

RESUMO

KEY MESSAGE: Teosinte improves maize grain yield and broadens the maize germplasm. Seventy-one quantitative trait loci associated with 24 differential traits between maize and teosinte were identified. Maize is a major cereal crop with a narrow germplasm that has limited its production and breeding progress. Teosinte, an ancestor of maize, provides valuable genetic resources for maize breeding. To identify the favorable alien alleles in teosinte and its yield potential for maize breeding, 4 backcrossed maize-teosinte recombinant inbred line (RIL) populations were cultivated under five conditions. A North Carolina mating design II experiment was conducted on inbred lines with B73 and Mo17 pedigree backgrounds to analyze their combining ability. Abundant phenotypic variation on 26 traits of four RIL populations were found, of which barren tip length, kernel height, and test weight showed positive genetic improvement potential. The hybrid FM132 (BD138/MP116) showed a superior grain yield to that of the check, with an average yield gain of 4.86%. Moreover, inbred lines BD138 and MP048 showed a higher general grain yield combining ability than those of their corresponding checks. We screened 4,964,439 high-quality single-nucleotide polymorphisms in the BD (B73/Zea diploperennis) RIL population for bin construction and used 2322 bin markers for genetic map construction and quantitative trait loci (QTL) mapping. Via inclusive composite interval mapping, 71 QTL associated with 24 differential traits were identified. Gene annotation and transcriptional expression suggested that Zm00001eb352570 and Zm00001eb352580, both annotated as ethylene-responsive transcription factors, were key candidate genes that regulate ear height and the ratio of ear to plant height. Our results indicate that teosinte could broaden the narrow maize germplasm, improve yield potential, and provide desirable alleles for maize breeding.


Assuntos
Melhoramento Vegetal , Zea mays , Alelos , Grão Comestível/genética , Etilenos , Fenótipo , Fatores de Transcrição/genética , Zea mays/genética , Zea mays/metabolismo
2.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216479

RESUMO

Plant growth and development are closely related to phosphate (Pi) and auxin. However, data regarding auxin response factors (ARFs) and their response to phosphate in maize are limited. Here, we isolated ZmARF4 in maize and dissected its biological function response to Pi stress. Overexpression of ZmARF4 in Arabidopsis confers tolerance of Pi deficiency with better root morphology than wild-type. Overexpressed ZmARF4 can partially restore the absence of lateral roots in mutant arf7 arf19. The ZmARF4 overexpression promoted Pi remobilization and up-regulated AtRNS1, under Pi limitation while it down-regulated the expression of the anthocyanin biosynthesis genes AtDFR and AtANS. A continuous detection revealed higher activity of promoter in the Pi-tolerant maize P178 line than in the sensitive 9782 line under low-Pi conditions. Meanwhile, GUS activity was specifically detected in new leaves and the stele of roots in transgenic offspring. ZmARF4 was localized to the nucleus and cytoplasm of the mesophyll protoplast and interacted with ZmILL4 and ZmChc5, which mediate lateral root initiation and defense response, respectively. ZmARF4 overexpression also conferred salinity and osmotic stress tolerance in Arabidopsis. Overall, our findings suggest that ZmARF4, a pleiotropic gene, modulates multiple stress signaling pathways, and thus, could be a candidate gene for engineering plants with multiple stress adaptation.


Assuntos
Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Zea mays/metabolismo , Antocianinas/metabolismo , Arabidopsis/genética , Organogênese Vegetal , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Transdução de Sinais , Zea mays/fisiologia
3.
J Exp Bot ; 72(7): 2790-2806, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33481006

RESUMO

Although plant-specific NAC transcription factors play crucial roles in response to abiotic stress, few reports describe the regulation of NAC genes in maize (Zea mays) by the cis-natural antisense transcripts (cis-NATs). In this study, 521 NAC genes from Gramineae were classified, of which 51 NAC genes contained cis-NATs. ZmNAC48 and cis-NATZmNAC48 co-localized to the same cell nucleus, and both transcripts responded to drought stress. Arabidopsis plants overexpressing ZmNAC48 had improved drought tolerance, lower rate of water loss, enhanced stomatal closure, and higher rates of survival. Transient expression in both maize protoplasts and tobacco leaves indicated that cis-NATZmNAC48 reduced ZmNAC48 expression. Western blotting and ribosome profiling analyses confirmed that cis-NATZmNAC48 lacked protein coding potential. Furthermore, the cis-NAT-derived small-interfering RNAs (nat-siRNAs) generated from the overlapping regions of ZmNAC48 and cis-NATZmNAC48 were detected in maize and transgenic Arabidopsis. Cis-NATZmNAC48 overexpressing maize showed higher water loss rate, increased stomatal opening, and had more dead leaves. Expression of ZmNAC48 and nat-siRNA was decreased in these plants. Taken together, our study indicates that both ZmNAC48 and cis-NATZmNAC48 are involved in plant drought stress responses, and that the double-stranded RNA-dependent mechanism is involved in the interaction between cis-NATZmNAC48 and ZmNAC48. Additionally, cis-NATZmNAC48 may negatively regulate ZmNAC48 to affect stomatal closure of maize.


Assuntos
Secas , Proteínas de Plantas/genética , RNA Antissenso , Estresse Fisiológico , Zea mays , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , RNA Interferente Pequeno , Zea mays/genética
4.
Plant Genome ; 12(3): 1-13, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-33016582

RESUMO

CORE IDEAS: Low P stress is a global issue for grain production. Significant phenotypic differences were detected among 13 traits in 356 maize lines under P-sufficient and P-deficient conditions. Significant single nucleotide polymorphisms (SNPs) and low-P stress-responsive genes were identified for 13 maize root traits based on a genome-wide association study. Hap5, harboring 12 favorable SNPs, could enhance strong root systems and P absorption under low-P stress. Phosphorus is an essential macronutrient required for normal plant growth and development. Determining the genetic basis of root traits will enhance our understanding of maize's (Zea mays L.) tolerance to low-P stress. Here, we identified significant phenotypic differences for 13 traits in maize seedlings subjected to P-sufficient and P-deficient conditions. Six extremely sensitive and seven low-P stress tolerant inbreds were selected from 356 inbred lines of maize. No significant differences were observed between temperate and tropical-subtropical groups with respect to trait ratios associated with the adaptation to low-P stress. The broad-sense heritability of these traits ranged from relatively moderate (0.59) to high (0.90). Through genome-wide association mapping with 541,575 informative single nucleotide polymorphisms (SNPs), 551, 1140 and 1157 significant SNPs were detected for the 13 traits in 2012, 2016 and both years combined, respectively, along with 23 shared candidate genes, seven of which overlapped with reported quantitative trait loci and genes for low-P stress. Five haplotypes located in candidate gene GRMZM2G009544 were identified; among these, Hap5, harboring 12 favorable SNP alleles, showed significantly greater values for the root traits studied than the other four haplotypes under both experimental conditions. The candidate genes and favorable haplotypes and alleles identified here provide promising resources for genetic studies and molecular breeding for improving tolerance to abiotic stress in maize.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays/genética , Fenótipo , Fósforo , Plântula/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA