Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Heart J ; 38(18): 1389-1398, 2017 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-27099261

RESUMO

AIMS: Oxidative stress contributes to the development of cardiac hypertrophy and heart failure. One of the mitochondrial sirtuins, Sirt4, is highly expressed in the heart, but its function remains unknown. The aim of the present study was to investigate the role of Sirt4 in the pathogenesis of pathological cardiac hypertrophy and the molecular mechanism by which Sirt4 regulates mitochondrial oxidative stress. METHODS AND RESULTS: Male C57BL/6 Sirt4 knockout mice, transgenic (Tg) mice exhibiting cardiac-specific overexpression of Sirt4 (Sirt4-Tg) and their respective controls were treated with angiotensin II (Ang II, 1.1 mg/kg/day). At 4 weeks, hypertrophic growth of cardiomyocytes, fibrosis and cardiac function were analysed. Sirt4 deficiency conferred resistance to Ang II infusion by significantly suppressing hypertrophic growth, and the deposition of fibrosis. In Sirt4-Tg mice, aggravated hypertrophy and reduced cardiac function were observed compared with non-Tg mice following Ang II treatment. Mechanistically, Sirt4 inhibited the binding of manganese superoxide dismutase (MnSOD) to Sirt3, another member of the mitochondrial sirtuins, and increased MnSOD acetylation levels to reduce its activity, resulting in elevated reactive oxygen species (ROS) accumulation upon Ang II stimulation. Furthermore, inhibition of ROS with manganese 5, 10, 15, 20-tetrakis-(4-benzoic acid) porphyrin, a mimetic of SOD, blocked the Sirt4-mediated aggravation of the hypertrophic response in Ang II-treated Sirt4-Tg mice. CONCLUSIONS: Sirt4 promotes hypertrophic growth, the generation of fibrosis and cardiac dysfunction by increasing ROS levels upon pathological stimulation. These findings reveal a role of Sirt4 in pathological cardiac hypertrophy, providing a new potential therapeutic strategy for this disease.


Assuntos
Cardiomegalia/enzimologia , Proteínas Mitocondriais/fisiologia , Sirtuínas/fisiologia , Superóxido Dismutase/antagonistas & inibidores , Angiotensina II/farmacologia , Animais , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/enzimologia , Miócitos Cardíacos/enzimologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Remodelação Vascular/fisiologia , Vasoconstritores/farmacologia
2.
Blood ; 123(2): 261-70, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24255919

RESUMO

Promyelocytic leukemia protein (PML) has been implicated as a participant in multiple cellular processes including senescence, apoptosis, proliferation, and differentiation. Studies of PML function in hematopoietic differentiation previously focused principally on its myeloid activities and also indicated that PML is involved in erythroid colony formation. However, the exact role that PML plays in erythropoiesis is essentially unknown. In this report, we found that PML4, a specific PML isoform expressed in erythroid cells, promotes endogenous erythroid genes expression in K562 and primary human erythroid cells. We show that the PML4 effect is GATA binding protein 1 (GATA-1) dependent using GATA-1 knockout/rescued G1E/G1E-ER4 cells. PML4, but not other detected PML isoforms, directly interacts with GATA-1 and can recruit it into PML nuclear bodies. Furthermore, PML4 facilitates GATA-1 trans-activation activity in an interaction-dependent manner. Finally, we present evidence that PML4 enhances GATA-1 occupancy within the globin gene cluster and stimulates cooperation between GATA-1 and its coactivator p300. These results demonstrate that PML4 is an important regulator of GATA-1 and participates in erythroid differention by enhancing GATA-1 trans-activation activity.


Assuntos
Diferenciação Celular/fisiologia , Células Eritroides/citologia , Células Eritroides/metabolismo , Fator de Transcrição GATA1/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas Supressoras de Tumor/metabolismo , Acetilação , Proteína p300 Associada a E1A/metabolismo , Fator de Transcrição GATA1/química , Fator de Transcrição GATA1/metabolismo , Expressão Gênica , Humanos , Células K562 , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteína da Leucemia Promielocítica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Dedos de Zinco
3.
J Biol Chem ; 287(36): 30641-52, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22825848

RESUMO

Matrix attachment region (MAR)-binding protein (MARBP) has profound influence on gene transcriptional control by tethering genes to the nuclear scaffold. MARBP SATB2 is recently known as a versatile regulator functioning in the differentiation of multiple cell types including embryonic stem cells, osteoblasts and immunocytes. Roles of SATB2 in erythroid cells and its working mechanism in orchestrating target gene expression are largely unexplored. We show here that SATB2 is expressed in erythroid cells and activates γ-globin genes by binding to MARs in their promoters and recruiting histone acetylase PCAF. Further analysis in higher-order chromatin structure shows that SATB2 affects physical proximity of human (G)γ- and (A)γ-globin promoters via self-association. We also found that SATB2 interacts with SATB1, which specifically activates ε-globin gene expression. Our results establish SATB2 as a novel γ-globin gene regulator and provide a glimpse of the differential and cooperative roles of SATB family proteins in modulating clustered genes transcription and mediating higher-order chromatin structures.


Assuntos
Células Eritroides/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Regiões de Interação com a Matriz/fisiologia , Família Multigênica/fisiologia , Fatores de Transcrição/metabolismo , gama-Globinas/biossíntese , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Eritroides/citologia , Humanos , Células K562 , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia , gama-Globinas/genética
4.
Oncotarget ; 8(55): 93516-93529, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212169

RESUMO

CCCTC-binding factor (CTCF) is an important epigenetic regulator implicated in multiple cellular processes, including growth, proliferation, differentiation, and apoptosis. Although CTCF deletion or mutation has been associated with human breast cancer, the role of CTCF in breast cancer is questionable. We investigated the biological functions of CTCF in breast cancer and the underlying mechanism. The results showed that CTCF expression in human breast cancer cells and tissues was significantly lower than that in normal breast cells and tissues. In addition, CTCF expression correlated significantly with cancer stage (P = 0.043) and pathological differentiation (P = 0.029). Furthermore, CTCF overexpression resulted in the inhibition of proliferation, migration, and invasion, while CTCF knockdown induced these processes in breast cancer cells. Transcriptome analysis and further experimental confirmation in MDA-MD-231 cells revealed that forced overexpression of CTCF might attenuate the DNA-binding ability of nuclear factor-kappaB (NF-κB) p65 subunit and inhibit activation of NF-κB and its target pro-oncogenes (tumor necrosis factor alpha-induced protein 3 [TNFAIP3]) and genes for growth-related proteins (early growth response protein 1 [EGR1] and growth arrest and DNA-damage-inducible alpha [GADD45a]). The present study provides a new insight into the tumor suppressor roles of CTCF in breast cancer development and suggests that the CTCF/NF-κB pathway is a potential target for breast cancer therapy.

5.
Sci Rep ; 7: 46204, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393844

RESUMO

Accumulating data from genome-wide association studies (GWAS) have provided a collection of novel candidate genes associated with complex diseases, such as atherosclerosis. We identified an atherosclerosis-associated single-nucleotide polymorphism (SNP) located in the intron of the long noncoding RNA (lncRNA) LINC00305 by searching the GWAS database. Although the function of LINC00305 is unknown, we found that LINC00305 expression is enriched in atherosclerotic plaques and monocytes. Overexpression of LINC00305 promoted the expression of inflammation-associated genes in THP-1 cells and reduced the expression of contractile markers in co-cultured human aortic smooth muscle cells (HASMCs). We showed that overexpression of LINC00305 activated nuclear factor-kappa beta (NF-κB) and that inhibition of NF-κB abolished LINC00305-mediated activation of cytokine expression. Mechanistically, LINC00305 interacted with lipocalin-1 interacting membrane receptor (LIMR), enhanced the interaction of LIMR and aryl-hydrocarbon receptor repressor (AHRR), and promoted protein expression as well as nuclear localization of AHRR. Moreover, LINC00305 activated NF-κB exclusively in the presence of LIMR and AHRR. In light of these findings, we propose that LINC00305 promotes monocyte inflammation by facilitating LIMR and AHRR cooperation and the AHRR activation, which eventually activates NF-κB, thereby inducing HASMC phenotype switching.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Inflamação/genética , Inflamação/patologia , Monócitos/metabolismo , Monócitos/patologia , NF-kappa B/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas Repressoras/metabolismo , Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Núcleo Celular/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Miócitos de Músculo Liso/metabolismo , Fenótipo , Transporte Proteico , RNA Longo não Codificante/genética , Receptores de Superfície Celular/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA