Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 425-434, 2024 Jun.
Artigo em Zh | MEDLINE | ID: mdl-38953267

RESUMO

Alzheimer's disease (AD) is a severe threat to human health and one of the three major causes of human death.Double-stranded RNA-dependent protein kinase (PKR) is an interferon-induced protein kinase involved in innate immunity.In the occurrence and development of AD,PKR is upregulated and continuously activated.On the one hand,the activation of PKR triggers an integrated stress response in brain cells.On the other hand,it indirectly upregulates the expression of ß-site amyloid precursor protein cleaving enzyme 1 and facilitates the accumulation of amyloid-ß protein (Aß),which could activate PKR activator to further activate PKR,thus forming a sustained accumulation cycle of Aß.In addition,PKR can promote Tau phosphorylation,thereby reducing microtubule stability in nerve cells.Inflammation in brain tissue,neurotoxicity resulted from Aß accumulation,and disruption of microtubule stability led to the progression of AD and the declines of memory and cognitive function.Therefore,PKR is a key molecule in the development and progression of AD.Effective PKR detection can aid in the diagnosis and prediction of AD progression and provide opportunities for clinical treatment.The inhibitors targeting PKR are expected to control the activity of PKR,thereby controlling the progression of AD.Therefore,PKR could be a target for the development of therapeutic drugs for AD.


Assuntos
Doença de Alzheimer , eIF-2 Quinase , Doença de Alzheimer/metabolismo , Humanos , eIF-2 Quinase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Fosforilação , Encéfalo/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
2.
Cell Mol Neurobiol ; 38(5): 1067-1079, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29441488

RESUMO

Interneurons in the olfactory bulb (OB) are generated from neuronal precursor cells migrating from anterior subventricular zone (SVZa) not only in the developing embryo but also throughout the postnatal life of mammals. In the present study, we established an in vivo electroporation assay to label SVZa cells of rat both at embryonic and postnatal ages, and traced SVZa progenitors and followed their migration pathway and differentiation. We found that labeled cells displayed high motility. Interestingly, the postnatal cells migrated faster than the embryonic cells after applying this assay at different ages of brain development. Furthermore, based on brain slice culture and time-lapse imaging, we analyzed the detail migratory properties of these labeled precursor neurons. Finally, tissue transplantation experiments revealed that cells already migrated in subependymal zone of OB were transplanted back into rostral migratory stream (RMS), and these cells could still migrate out tangentially along RMS to OB. Taken together, these findings provide an in vivo labeling assay to follow and trace migrating cells in the RMS, their maturation and integration into OB neuron network, and unrecognized phenomena that postnatal SVZa progenitor cells with higher motility than embryonic cells, and their migration was affected by extrinsic environments.


Assuntos
Encéfalo/citologia , Encéfalo/embriologia , Movimento Celular , Eletroporação/métodos , Animais , Animais Recém-Nascidos , Diferenciação Celular , Forma Celular , Proteínas de Fluorescência Verde/metabolismo , Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Bulbo Olfatório/citologia , Ratos Sprague-Dawley , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA