Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Evol Lett ; 8(4): 494-504, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39100238

RESUMO

Reindeer have long been served as vital subsistence resources for inhabitants of Arctic and subarctic regions owing to their domestication. However, the evolutionary relationships and divergence times among different reindeer populations, genetic traits that distinguish domesticated reindeer, and factors that contribute to their relative docility compared with that of other Cervidae specie, remain unclear. In this study, we sequenced the genomes of 32 individuals from wild and domestic reindeer populations that inhabit Arctic and subarctic regions. We found that reindeer experienced 2 or more independent domestication events characterized by weak artificial selection pressure and limited significant differences in genomic parameters between wild and domestic populations. Alterations in conserved noncoding elements in the reindeer genomes, particularly those associated with nervous system development, may have contributed to their domestication by rendering the nervous system less responsive. Together, our results suggest that inherent species-specific traits, rather than intense artificial selection, may have played a significant role in the relatively docile behavior of reindeer and offer valuable insights into the domestication process of these animals.

2.
Sci China Life Sci ; 66(11): 2629-2645, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37273070

RESUMO

Although most fishes are ectothermic, some, including tuna and billfish, achieve endothermy through specialized heat producing tissues that are modified muscles. How these heat producing tissues evolved, and whether they share convergent molecular mechanisms, remain unresolved. Here, we generated a high-quality genome from the mackerel tuna (Euthynnus affinis) and investigated the heat producing tissues of this fish by single-nucleus and bulk RNA sequencing. Compared with other teleosts, tuna-specific genetic variation is strongly associated with muscle differentiation. Single-nucleus RNA-seq revealed a high proportion of specific slow skeletal muscle cell subtypes in the heat producing tissues of tuna. Marker genes of this cell subtype are associated with the relative sliding of actin and myosin, suggesting that tuna endothermy is mainly based on shivering thermogenesis. In contrast, cross-species transcriptome analysis indicated that endothermy in billfish relies mainly on non-shivering thermogenesis. Nevertheless, the heat producing tissues of the different species do share some tissue-specific genes, including vascular-related and mitochondrial genes. Overall, although tunas and billfishes differ in their thermogenic strategies, they share similar expression patterns in some respects, highlighting the complexity of convergent evolution.


Assuntos
Temperatura Alta , Atum , Animais , Atum/genética , Termogênese/genética , Peixes/fisiologia , Músculos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA