Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 131: 106339, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599218

RESUMO

Necroptosis is confirmed as a precisely programmed cell death that is activated in caspase-deficient conditions. Receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed-lineage kinase domain-like pseudokinase (MLKL) are the key regulators involved in the signaling pathway. However, accumulating evidence suggests that RIPK1 also works in apoptosis and inflammation pathways independent of necroptosis. Differently, RIPK3 signals necroptosis independent of RIPK1. Thus, identification of specific RIPK3 inhibitors is of great importance for the drug development associated with necroptosis. The benzothiazole carboxamide is a privileged scaffold as RIPK3 inhibitors developed by our group recently. In this study, we work on the phenyl group in-between of benzothiazole and carboxamide to profile the chemical space. Finally, a chlorinated derivative XY-1-127 was found to specifically inhibit necroptosis rather than apoptosis with an EC50 value of 676.8 nM and target RIPK3 with a Kd of 420 nM rather than RIPK1 (Kd = 4300 nM). It was also confirmed to block the formation of necrosome by inhibiting RIPK3 phosphorylation at 1 µM in necroptosis cells. This work discovers the chemical space insights on the phenyl group of the substituted benzothiazole RIPK3 inhibitors and provides a new lead compound for further development.


Assuntos
Apoptose , Benzotiazóis , Necroptose , Inibidores de Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Apoptose/efeitos dos fármacos , Benzotiazóis/química , Benzotiazóis/farmacologia , Inflamação/metabolismo , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Necroptose/efeitos dos fármacos
2.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298489

RESUMO

Lung cancer is the leading cause of cancer-related deaths due to its high incidence, late diagnosis, and limited success in clinical treatment. Prevention therefore is critical to help improve lung cancer management. Although tobacco control and tobacco cessation are effective strategies for lung cancer prevention, the numbers of current and former smokers in the USA and globally are not expected to decrease significantly in the near future. Chemoprevention and interception are needed to help high-risk individuals reduce their lung cancer risk or delay lung cancer development. This article will review the epidemiological data, pre-clinical animal data, and limited clinical data that support the potential of kava in reducing human lung cancer risk via its holistic polypharmacological effects. To facilitate its future clinical translation, advanced knowledge is needed with respect to its mechanisms of action and the development of mechanism-based non-invasive biomarkers in addition to safety and efficacy in more clinically relevant animal models.


Assuntos
Kava , Neoplasias Pulmonares , Animais , Humanos , Quimioprevenção/métodos , Biomarcadores , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/etiologia
3.
Carcinogenesis ; 43(2): 170-181, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34919675

RESUMO

Lung cancer is the leading cause of cancer-related deaths. While tobacco use is the main cause, only 10-20% of smokers eventually develop clinical lung cancer. Thus, the ability of lung cancer risk prediction among smokers could transform lung cancer management with early preventive interventions. Given that DNA damage by tobacco carcinogens is the potential root cause of lung carcinogenesis, we characterized the adductomic totality of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (a potent lung carcinogen in tobacco, commonly known as NNK) in the target lung tissues, the liver tissues and the peripheral serum samples in a single-dose NNK-induced lung carcinogenesis A/J mouse model. We also characterized these adductomic totalities from the two enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, the major in vivo metabolite of NNK) given their distinct carcinogenicity in A/J mice. With these adductomic data, we demonstrated that tissue protein adductomics have the highest abundance. We also identified that the adductomic levels at the 8 h time point after carcinogen exposure were among the highest. More importantly, the relationships among these adductomics were characterized with overall strong positive linear correlations, demonstrating the potential of using peripheral serum protein adductomics to reflect DNA adductomics in the target lung tissues. Lastly, we explored the relationships of these adductomics with lung tumor status in A/J mice, providing preliminary but promising evidence of the feasibility of lung cancer risk prediction using peripheral adductomic profiling.


Assuntos
Neoplasias Pulmonares , Nitrosaminas , Animais , Carcinogênese/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Pulmão/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos , Nitrosaminas/metabolismo , Ratos , Ratos Endogâmicos F344
4.
Carcinogenesis ; 43(7): 659-670, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35353881

RESUMO

Our earlier work demonstrated varying potency of dihydromethysticin (DHM) as the active kava phytochemical for prophylaxis of tobacco carcinogen nicotine-derived nitrosamine ketone (NNK)-induced mouse lung carcinogenesis. Efficacy was dependent on timing of DHM gavage ahead of NNK insult. In addition to DNA adducts in the lung tissues mitigated by DHM in a time-dependent manner, our in vivo data strongly implicated the existence of DNA damage-independent mechanism(s) in NNK-induced lung carcinogenesis targeted by DHM to fully exert its anti-initiation efficacy. In the present work, RNA seq transcriptomic profiling of NNK-exposed (2 h) lung tissues with/without a DHM (8 h) pretreatment revealed a snap shot of canonical acute phase tissue damage and stress response signaling pathways as well as an activation of protein kinase A (PKA) pathway induced by NNK and the restraining effects of DHM. The activation of the PKA pathway by NNK active metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) at a concentration incapable of promoting DNA adduct was confirmed in a lung cancer cell culture model, potentially through NNAL binding to and activation of the ß-adrenergic receptor. Our in vitro and in vivo data overall support the hypothesis that DHM suppresses PKA activation as a key DNA damage-independent mechanistic lead, contributing to its effective prophylaxis of NNK-induced lung carcinogenesis. Systems biology approaches with a detailed temporal dissection of timing of DHM intake versus NNK exposure are warranted to fill the knowledge gaps concerning the DNA damage-driven mechanisms and DNA damage-independent mechanisms to optimize the implementation strategy for DHM to achieve maximal lung cancer chemoprevention.


Assuntos
Neoplasias Pulmonares , Nitrosaminas , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Proteínas Quinases Dependentes de AMP Cíclico/efeitos adversos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Adutos de DNA/metabolismo , Dano ao DNA , Pulmão/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/prevenção & controle , Camundongos , Nitrosaminas/metabolismo , Nitrosaminas/toxicidade , Pironas
5.
Planta Med ; 88(14): 1348-1359, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34839465

RESUMO

There are several forms of kava (Piper methysticum) products available for human consumption, and many factors are known to influence their chemical compositions and therefore their pharmacological properties. Because of the increased popularity of kava intake, a rigorous characterization of their content diversity is prerequisite, particularly due to its known potential to cause hepatotoxicity. To understand the composition diversity of kavalactones and flavokavains in commercial kava products, we developed a UPLC-MS/MS-based analytical method for the quantification of six kavalactones (kavain, dihydrokavain, methysticin, dihydromethysticin, yangonin and desmethoxyyangonin) and two flavokavains (flavokavains A and B) and analyzed their contents in 28 different kava products in the form of capsules, tinctures, traditional aqueous suspensions and dried powders. Our results demonstrated a great variation in terms of the total and relative abundance of the analyzed kavalactones and flavokavains among the analyzed kava preparations. More importantly, the kavalactone abundance in the product label could differ up to 90% from our experimental measurements. Therefore, more rigorous and comprehensive quality control of kava products is required with respect to the content of individual kavalactones and flavokavains. Accurate content information is essential to understand the pharmacological properties and safety of different kava products.


Assuntos
Kava , Humanos , Kava/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Lactonas/farmacologia , Lactonas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
6.
Mol Pharmacol ; 97(6): 402-408, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32276963

RESUMO

The 78-kDa glucose-regulated protein (GRP78), an endoplasmic reticulum (ER) chaperone, is a master regulator of the ER stress. A number of studies revealed that high levels of GRP78 protein in cancer cells confer multidrug resistance (MDR) to therapeutic treatment. Therefore, drug candidate that reduces GRP78 may represent a novel approach to eliminate MDR cancer cells. Our earlier studies showed that a set of 4H-chromene derivatives induced selective cytotoxicity in MDR cancer cells. In the present study, we elucidated its selective mechanism in four MDR cancer cell lines with one lead candidate (CXL146). Cytotoxicity results confirmed the selective cytotoxicity of CXL146 toward the MDR cancer cell lines. We noted significant overexpression of GRP78 in all four MDR cell lines compared with the parental cell lines. Unexpectedly, CXL146 treatment rapidly and dose-dependently reduced GRP78 protein in MDR cancer cell lines. Using human leukemia (HL) 60/mitoxantrone (MX) 2 cell line as the model, we demonstrated that CXL146 treatment activated the unfolded protein response (UPR); as evidenced by the activation of inositol-requiring enzyme 1α, protein kinase R-like ER kinase, and activating transcription factor 6. CXL146-induced UPR activation led to a series of downstream events, including extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase activation, which contributed to CXL146-induced apoptosis. Targeted reduction in GRP78 resulted in reduced sensitivity of HL60/MX2 toward CXL146. Long-term sublethal CXL146 exposure also led to reduction in GRP78 in HL60/MX2. These data collectively support GRP78 as the target of CXL146 in MDR treatment. Interestingly, HL60/MX2 upon long-term sublethal CXL146 exposure regained sensitivity to mitoxantrone treatment. Therefore, further exploration of CXL146 as a novel therapy in treating MDR cancer cells is warranted. SIGNIFICANCE STATEMENT: Multidrug resistance is one major challenge to cancer treatment. This study provides evidence that cancer cells overexpress 78-kDa glucose-regulated protein (GRP78) as a mechanism to acquire resistance to standard cancer therapies. A chromene-based small molecule, CXL146, selectively eliminates cancer cells with GRP78 overexpression via activating unfolded protein response-mediated apoptosis. Further characterization indicates that CXL146 and standard therapies complementarily target different populations of cancer cells, supporting the potential of CXL146 to overcome multidrug resistance in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Chaperona BiP do Retículo Endoplasmático , Células HL-60 , Proteínas de Choque Térmico/efeitos dos fármacos , Humanos , Mitoxantrona/farmacologia
7.
Chem Res Toxicol ; 33(7): 1980-1988, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32476407

RESUMO

Our early studies demonstrated an impressive chemopreventive efficacy of dihydromethysticin (DHM), unique in kava, against tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice in which DHM was supplemented in the diet. The current work was carried out to validate the efficacy, optimize the dosing schedule, and further elucidate the mechanisms using oral bolus dosing of DHM. The results demonstrated a dose-dependent chemopreventive efficacy of DHM (orally administered 1 h before each of the two NNK intraperitoneal injections, 1 week apart) against NNK-induced lung adenoma formation. Temporally, DHM at 0.8 mg per dose (∼32 mg per kg body weight) exhibited 100% lung adenoma inhibition when given 3 and 8 h before each NNK injection and attained >93% inhibition when dosed at either 1 or 16 h before each NNK injection. The simultaneous treatment (0 h) or 40 h pretreatment (-40 h) decreased lung adenoma burden by 49.8% and 52.1%, respectively. However, post-NNK administration of DHM (1-8 h after each NNK injection) was ineffective against lung tumor formation. In short-term experiments for mechanistic exploration, DHM treatment reduced the formation of NNK-induced O6-methylguanine (O6-mG, a carcinogenic DNA adduct in A/J mice) in the target lung tissue and increased the urinary excretion of NNK detoxification metabolites as judged by the ratio of urinary NNAL-O-gluc to free NNAL, generally in synchrony with the tumor prevention efficacy outcomes in the dose scheduling time-course experiment. Overall, these results suggest DHM as a potential chemopreventive agent against lung tumorigenesis in smokers, with O6-mG and NNAL detoxification as possible surrogate biomarkers.


Assuntos
Adenoma/prevenção & controle , Anticarcinógenos/administração & dosagem , Butanonas/toxicidade , Carcinógenos/toxicidade , Neoplasias Pulmonares/prevenção & controle , Nitrosaminas/toxicidade , Pironas/administração & dosagem , Administração Oral , Animais , Carcinogênese/efeitos dos fármacos , Adutos de DNA/efeitos dos fármacos , Suplementos Nutricionais , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos Endogâmicos , Nicotiana
8.
Bioorg Med Chem Lett ; 30(2): 126719, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31784319

RESUMO

Cytochrome P450 isozyme 1A2 (CYP1A2) is one main xenobiotic metabolizing enzyme in humans. It has been associated with the bioactivation of procarcinogens, including 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco specific and potent pulmonary carcinogen. This work describes the computational design and in-silico screening of potential CYP1A2 inhibitors, their chemical synthesis, and enzymatic characterization with the ultimate aim of assessing their potential as cancer chemopreventive agents. To achieve this, a combined classifiers model was used to screen a library of quinazoline-based molecules against known CYP1A2 inhibitors, non-inhibitors, and substrates to predict which quinazoline candidates had a better probability as an inhibitor. Compounds with high probability of CYP1A2 inhibition were further computationally evaluated via Glide docking. Candidates predicted to have selectivity and high binding affinity for CYP1A2 were synthesized and assayed for their enzymatic inhibition of CYP1A2, leading to the discovery of novel and potent quinazoline-based CYP1A2 inhibitors.


Assuntos
Citocromo P-450 CYP1A2/química , Desenho de Fármacos , Quinazolinas/química , Sítios de Ligação , Citocromo P-450 CYP1A2/metabolismo , Inibidores do Citocromo P-450 CYP1A2/síntese química , Inibidores do Citocromo P-450 CYP1A2/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Quinazolinas/metabolismo , Relação Estrutura-Atividade
9.
Bioorg Chem ; 103: 104172, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32890991

RESUMO

The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway works as the key regulator against oxidative stress damage in many cells and organs. It has been a widely proposed therapeutic target for neurodegenerative diseases, including Alzheimer's disease (AD). This study aimed at determining the neuroprotective activity of 9 (NXPZ-2), a small-molecule compound that directly inhibits the Keap1-Nrf2 protein-protein interaction, in an amyloid beta 1-42 (Aß1-42) oligomer intracerebroventricularly (i.c.v.) injected mouse model. Behavioral tests showed that NXPZ-2 treatment dose-relatedly ameliorated learning and memory dysfunction in Aß1-42-treated mice. HE and Nissl staining showed that NXPZ-2 improved brain tissue pathological changes in AD mice by increasing neuron quantity and function. Western blot analysis of the hippocampus and cortex showed up-regulated Nrf2 in whole cell lysate, with increased nuclear translocation to increase Nrf2-targeted antioxidant enzymes (HO-1, NQO-1) and decreased p-Tau in NXPZ-2-treated mice. ELISA results showed that NXPZ-2 treatment increased serum Nrf2 and significantly decreased serum Aß1-42 levels in AD mice. Furthermore, hippocampal and cortical superoxide dismutase (SOD) and glutathione (GSH) levels increased, while malondialdehyde (MDA) levels decreased. No obvious toxicity was observed in primary cultured mouse cortical neurons and organs with NXPZ-2 treatment. No ameliorative effect was observed of NXPZ-2 in Nrf2 knockout AD mice. Collectively, our findings demonstrated that NXPZ-2 could be a promising therapeutic agent against AD, and provided the first set of experimental evidence, in a mouse model, to support Keap1-Nrf2 interaction as a validated target for the Nrf2 reactivation in AD.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Doença de Alzheimer , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
10.
Planta Med ; 86(1): 26-31, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31711251

RESUMO

Kava, the extract of the roots of Piper methysticum, has been traditionally consumed in the South Pacific islands for its natural relaxing property. Epidemiological data suggests that kava consumption may reduce human cancer risk, and in vitro and in vivo models suggest chemopreventive potential against carcinogen-induced tumorigenesis. Therefore, knowledge about its molecular mechanisms and responsible ingredient(s) for these beneficial properties will better guide kava's use for the management of these disorders. Psychological stress typically results in increased production of stress hormones, such as norepinephrine (NE), which activate adrenergic receptors (ARs). Psychological stress has also been associated with increased cancer incidence and poor clinical outcomes in cancer patients. Mechanistically, binding of NE to ARs induces intracellular calcium influx, which activates downstream signaling pathways involved in both stress and cancer development. In this study, we characterized the effect of kava and its components, 3 fractions and 6 major kavalactones, on NE-induced intracellular calcium influx in H1299, a human non-small cell lung carcinoma cell line. Results show that kava extract effectively inhibits NE-mediated intracellular calcium influx in H1299 cells, potentially through antagonizing ß-AR signaling. This inhibitory activity is recapitulated by the major kavalactones in kava. Among the 6 major kavalactones, DHK demonstrated the best potency. Taken together, our study suggests a novel mechanism through which kava and its ingredients potentially offer the anxiolytic and cancer-preventive activity.


Assuntos
Ansiolíticos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Cálcio/metabolismo , Kava/química , Lactonas/farmacologia , Neoplasias Pulmonares/prevenção & controle , Extratos Vegetais/farmacologia , Ansiolíticos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Humanos , Lactonas/isolamento & purificação , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/psicologia , Norepinefrina/antagonistas & inibidores , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico
11.
Chem Rev ; 117(12): 7762-7810, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28488435

RESUMO

Privileged structures have been widely used as an effective template in medicinal chemistry for drug discovery. Chalcone is a common simple scaffold found in many naturally occurring compounds. Many chalcone derivatives have also been prepared due to their convenient synthesis. These natural products and synthetic compounds have shown numerous interesting biological activities with clinical potentials against various diseases. This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry. Multiple aspects of chalcone will be summarized herein, including the isolation of novel chalcone derivatives, the development of new synthetic methodologies, the evaluation of their biological properties, and the exploration of the mechanisms of action as well as target identification. This review is expected to be a comprehensive, authoritative, and critical review of the chalcone template to the chemistry community.


Assuntos
Chalcona/química , Chalcona/farmacologia , Química Farmacêutica/métodos , Animais , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Descoberta de Drogas , Humanos , Terapia de Alvo Molecular
12.
Chem Res Toxicol ; 31(9): 836-838, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30136842

RESUMO

Human urinary DNA adducts may be useful surrogate biomarkers to estimate carcinogen exposure and activation, particularly if such adducts are of high selectivity from a specific carcinogen source. In this report, we provided evidence supporting tobacco use and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) being the dominant source for 3-methyladenine (3-mA), while nontobacco factors contribute significantly to 7-methylguanine and 1-methyladenine in the urine. Upon confirmation in human urine samples from larger populations in the future, urinary 3-mA may be used to estimate NNK bioactivation in smokers and to facilitate the development of a chemopreventive agent against NNK-induced carcinogenesis.


Assuntos
Adutos de DNA/urina , DNA/química , Nitrosaminas/análise , Uso de Tabaco , Animais , Carcinógenos/toxicidade , Humanos , Camundongos , Nitrosaminas/química
13.
Mol Pharm ; 15(9): 3892-3900, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30048137

RESUMO

Multidrug resistance and toxic side effects are the major challenges in cancer treatment with microtubule-targeting agents (MTAs), and thus, there is an urgent clinical need for new therapies. Chalcone, a common simple scaffold found in many natural products, is widely used as a privileged structure in medicinal chemistry. We have previously validated tubulin as the anticancer target for chalcone derivatives. In this study, an α-methyl-substituted indole-chalcone (FC77) was synthesized and found to exhibit an excellent cytotoxicity against the NCI-60 cell lines (average concentration causing 50% growth inhibition = 6 nM). More importantly, several multidrug-resistant cancer cell lines showed no resistance to FC77, and the compound demonstrated good selective toxicity against cancer cells versus normal CD34+ blood progenitor cells. A further mechanistic study demonstrated that FC77 could arrest cells that relate to the binding to tubulin and inhibit the microtubule dynamics. The National Cancer Institute COMPARE analysis and molecular modeling indicated that FC77 had a mechanism of action similar to that of colchicine. Overall, our data demonstrate that this indole-chalcone represents a novel MTA template for further development of potential drug candidates for the treatment of multidrug-resistant cancers.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Chalconas/química , Indóis/química , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistência a Múltiplos Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
14.
J Cell Biochem ; 117(5): 1136-44, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26448608

RESUMO

Combination chemotherapy is an effective strategy for increasing anticancer efficacy, reducing side effects and alleviating drug resistance. Here we report that combination of the recently identified novel chalcone derivative, chalcone-24 (Chal-24), and TNF-related apoptosis-inducing ligand (TRAIL) significantly increases cytotoxicity in lung cancer cells. Chal-24 treatment significantly enhanced TRAIL-induced activation of caspase-8 and caspase-3, and the cytotoxicity induced by combination of these agents was effectively suppressed by the pan-caspase inhibitor z-VAD-fmk. Chal-24 and TRAIL combination suppressed expression of cellular FLICE (FADD-like IL-1ß-converting enzyme)-inhibitory protein large (c-FLIP(L)) and cellular inhibitor of apoptosis proteins (c-IAPs), and ectopic expression of c-FLIP(L) and c-IAPs inhibited the potentiated cytotoxicity. In addition, TRAIL and Chal-24 cooperatively activated autophagy. Suppression of autophagy effectively attenuated cytotoxicity induced by Chal-24 and TRAIL combination, which was associated with attenuation of c-FLIP(L) and c-IAPs degradation. Altogether, these results suggest that Chal-24 potentiates the anticancer activity of TRAIL through autophagy-mediated degradation of c-FLIP(L) and c-IAPs, and that combination of Chal-24 and TRAIL could be an effective approach in improving chemotherapy efficacy.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Chalconas/farmacologia , Proteínas Inibidoras de Apoptose/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Células A549 , Clorometilcetonas de Aminoácidos/farmacologia , Western Blotting , Caspase 3/metabolismo , Caspase 8/metabolismo , Inibidores de Caspase/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Proteólise/efeitos dos fármacos
15.
Biochem Biophys Res Commun ; 481(3-4): 206-211, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27815070

RESUMO

We have developed a charge-mediated fusion method to reconstitute the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) in giant unilamellar vesicles (GUV). Intracellular Ca2+ transport by SERCA controls key processes in human cells such as proliferation, signaling, and contraction. Small-molecule effectors of SERCA are urgently needed as therapeutics for Ca2+ dysregulation in human diseases including cancer, diabetes, and heart failure. Here we report the development of a method for efficiently reconstituting SERCA in GUV, and we describe a streamlined protocol based on optimized parameters (e.g., lipid components, SERCA preparation, and activity assay requirements). ATP-dependent Ca2+ transport by SERCA in single GUV was detected directly using confocal fluorescence microscopy with the Ca2+ indicator Fluo-5F. The GUV reconstitution system was validated for functional screening of Ca2+ transport using thapsigargin (TG), a small-molecule inhibitor of SERCA currently in clinical trials as a prostate cancer prodrug. The GUV system overcomes the problem of inhibitory Ca2+ accumulation for SERCA in native and reconstituted small unilamellar vesicles (SUV). We propose that charge-mediated fusion provides a widely-applicable method for GUV reconstitution of clinically-important membrane transport proteins. We conclude that GUV reconstitution is a technological advancement for evaluating small-molecule effectors of SERCA.


Assuntos
Cálcio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Lipossomas Unilamelares/metabolismo , Animais , Transporte de Íons/efeitos dos fármacos , Lipídeos/química , Microscopia de Fluorescência , Ácidos Oleicos/química , Fosfatidilcolinas/química , Coelhos , Eletricidade Estática , Tapsigargina/farmacologia
16.
Mol Carcinog ; 55(12): 2291-2303, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26840761

RESUMO

Kava (Piper methysticum Forster) extract and its major kavalactones have been shown to block chemically induced lung tumor initiation in mouse models. Here we evaluated the chemopreventive effect of a kavalactone-rich Kava fraction B (KFB), free of flavokavains, on carcinogenesis in a transgenic adenocarcinoma of mouse prostate (TRAMP) model and characterized the prostate gene expression signatures. Male C57BL/6 TRAMP mice were fed AIN93M diet with or without 0.4% KFB from 8 wk of age. Mice were euthanized at 16 or 28 wk. The growth of the dorsolateral prostate (DLP) lobes in KFB-treated TRAMP mice was inhibited by 66% and 58% at the respective endpoint. Anterior and ventral prostate lobes in KFB-treated TRAMP mice were suppressed by 40% and 49% at 28 wk, respectively. KFB consumption decreased cell proliferation biomarker Ki-67 and epithelial lesion severity in TRAMP DLP, without detectable apoptosis enhancement. Real time qRT-PCR detection of mRNA from DLP at 28 wk showed decreased expression of cell cycle regulatory genes congruent with Ki-67 suppression. Microarray profiling of DLP mRNA indicated that "oncogene-like" genes related to angiogenesis and cell proliferation were suppressed by KFB but tumor suppressor, immunity, muscle/neuro, and metabolism-related genes were upregulated by KFB in both TRAMP and WT DLP. TRAMP mice fed KFB diet developed lower incidence of neuroendocrine carcinomas (NECa) (2 out of 14 mice) than those fed the basal diet (8 out of 14 mice, χ2 = 5.6, P < 0.025). KFB may, therefore, inhibit not only TRAMP DLP epithelial lesions involving multiple molecular pathways, but also NECa. © 2016 Wiley Periodicals, Inc.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos Fitogênicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Kava/química , Lactonas/uso terapêutico , Próstata/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Feminino , Lactonas/química , Lactonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transcriptoma/efeitos dos fármacos , Transgenes
17.
Drug Metab Dispos ; 44(3): 422-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26744252

RESUMO

Effective chemopreventive agents are needed against lung cancer, the leading cause of cancer death. Results from our previous work showed that dietary dihydromethysticin (DHM) effectively blocked initiation of lung tumorigenesis by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mice, and it preferentially reduced 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL)-derived DNA adducts in lung. This study explored the mechanism(s) responsible for DHM's differential effects on NNK/NNAL-derived DNA damage by quantifying their metabolites in A/J mice. The results showed that dietary DHM had no effect on NNK or NNAL abundance in vivo, indicating that DHM does not affect NNAL formation from NNK. DHM had a minimal effect on cytochrome P450 2A5 (CYP2A5, which catalyzes NNK and NNAL bioactivation in A/J mouse lung), suggesting that it does not inhibit NNAL bioactivation. Dietary DHM significantly increased O-glucuronidated NNAL (NNAL-O-gluc) in A/J mice. Lung and liver microsomes from dietary DHM-treated mice showed enhanced activities for NNAL O-glucuronidation. These results overall support the notion that dietary DHM treatment increases NNAL detoxification, potentially accounting for its chemopreventive efficacy against NNK-induced lung tumorigenesis in A/J mice. The ratio of urinary NNAL-O-gluc and free NNAL may serve as a biomarker to facilitate the clinical evaluation of DHM-based lung cancer chemopreventive agents.


Assuntos
Inativação Metabólica/efeitos dos fármacos , Nitrosaminas/metabolismo , Pironas/farmacologia , Animais , Carcinogênese/efeitos dos fármacos , Quimioprevenção/métodos , Adutos de DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dieta , Feminino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/prevenção & controle , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo
18.
Chem Res Toxicol ; 29(11): 1828-1834, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27728767

RESUMO

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a key carcinogen responsible for tobacco smoke-induced lung carcinogenesis. Among the types of DNA damage caused by NNK and its metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), O6-methylguanine (O6-mG) is likely the most carcinogen in A/J mice. Results of our previous studies showed that levels of O6-mG and other types of NNAL-derived DNA damage were preferentially reduced in the lung of female A/J mice upon dietary treatment with dihydromethysticin (DHM), a promising lung cancer chemopreventive agent from kava. Such a differential blockage may be mediated via an increased level of NNAL glucuronidation, thereby leading to its detoxification. The potential of the aryl hydrocarbon receptor (AhR) as an upstream target of DHM mediating these events was evaluated herein using Ahr+/- and Ahr-/- C57BL/6 female mice because DHM was reported as an AhR agonist. DHM (0.05, 0.2, and 1.0 mg/g of diet) and dihydrokavain (DHK, an inactive analogue, 1.0 mg/g of diet) were given to mice for 7 days, followed by a single intraperitoneal dose of NNK at 100 mg/kg of body weight. The effects of DHM on the amount of O6-mG in the lung, on the urinary ratio of glucuronidated NNAL (NNAL-Gluc) and free NNAL, and on CYP1A1/2 activity in the liver microsomes were analyzed. As observed in A/J mice, DHM treatment significantly and dose-dependently reduced the level of O6-mG in the target lung tissue, but there were no significant differences in O6-mG reduction between mice from Ahr+/- and Ahr-/- backgrounds. Similarly, in both strains, DHM at 1 mg/g of diet significantly increased the urinary ratio of NNAL-Gluc to free NNAL and CYP1A1/2 enzymatic activity in liver with no changes detected at lower DHM dosages. Because none of these effects of DHM were dependent on Ahr status, AhR clearly is not the upstream target for DHM.


Assuntos
Carcinógenos , Guanina/análogos & derivados , Nicotiana/química , Nitrosaminas/antagonistas & inibidores , Pironas/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Feminino , Guanina/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Nitrosaminas/toxicidade , Receptores de Hidrocarboneto Arílico/genética
19.
Bioorg Med Chem ; 24(6): 1292-7, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26867486

RESUMO

4H-Chromene-based compounds, for example, CXL017, CXL035, and CXL055, have a unique anticancer potential that they selectively kill multi-drug resistant cancer cells. Reported herein is the extended structure-activity relationship (SAR) study, focusing on the ester functional group at the 4th position and the conformation at the 6th position. Sharp SARs were observed at both positions with respect to cellular cytotoxic potency and selectivity between the parental HL60 and the multi-drug resistant HL60/MX2 cells. These results provide critical guidance for future medicinal optimization.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Leucemia/patologia , Antineoplásicos/síntese química , Benzopiranos/síntese química , Benzopiranos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Leucemia/tratamento farmacológico , Estrutura Molecular , Relação Estrutura-Atividade
20.
Arch Pharm (Weinheim) ; 349(7): 539-52, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27214789

RESUMO

Understanding the mechanisms responsible for the various biological activities of chalcones, particularly the direct cellular targets, presents an unmet challenge. Here, we prepared a series of fluorescent chalcone derivatives as chemical probes for their mechanistic investigation. Upon systematic physicochemical characterization, we explored their potential to elucidate the mode of action of chalcones' cytotoxicity. The fluorescence of the chalcones was found to be highly sensitive to structural and environmental factors. Structurally, a 4-dialkylamino group on the B ring, suitable electronic properties of the A ring substituents, and the planar conformation of the chalcone's core structure were essential for optimal fluorescence. Environmental factors influencing fluorescence included solvent polarity, pH, and the interactions of the chalcones with proteins and detergents. It was found that 18 chalcones showed a fluorescent brightness greater than 6000 M(-1) cm(-1) in DMSO. However, water dramatically quenched the fluorescence, although it could be partially recovered in the presence of BSA or detergents. As expected, these fluorescent chalcones showed a sharp structure-activity relationship in their cellular cytotoxicity, leading to the identification of structurally similar cytotoxic and non-cytotoxic fluorescent chalcones as chemical probes. Confocal microscopy results revealed the co-localization of the cytotoxic probe C8 and tubulin in cells, supporting tubulin as the direct cellular target responsible for the cytotoxicity of chalcones.


Assuntos
Chalconas/química , Chalconas/farmacologia , Citotoxinas/química , Citotoxinas/farmacologia , Fluorescência , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalconas/síntese química , Citotoxinas/síntese química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tubulina (Proteína)/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA