Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Toxicol Appl Pharmacol ; 416: 115469, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33640343

RESUMO

Heat stress-induced oxidative stress in bovine mammary epithelial cells (BMECs) threatens the normal growth and development of bovine mammary tissue, resulting in lower milk production of dairy cows. The aim of the present study is to investigate the protective effects of S-allyl cysteine (SAC), an organosulfur component extracted from aged garlic, on heat stress-induced oxidative stress and apoptosis in BMECs and to explore its underlying mechanisms. Our results showed that heat stress treatment considerably decreased cell viability, whereas SAC treatment dose-dependently restored cell viability of BMECs under heat-stress conditions. In addition, SAC protected BMECs from heat stress-induced oxidative damage by inhibiting the excessive accumulation of reactive oxygen species (ROS) and increasing the activity of antioxidant enzymes. It also inhibited heat stress-induced apoptosis by reducing the ratio of Bax/Bcl-2 and blocking proteolytic the cleavage of caspase-3 in BMECs. Interestingly, we found that the protective effect of SAC on heat stress-induced oxidative stress and apoptosis was dependent on the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. SAC promoted the Nrf2 nuclear translocation in heat stress-induced BMECs. The results were also validated by Nrf2 and Keap1 knockdown experiments further demonstrating that Nrf-2 was indeed involved in the protective effect of SAC on heat stress-induced oxidative damage and apoptosis. In summary, our results showed that SAC could protect BMECs from heat stress-induced injury by mediating the Nrf2/HO-1 signaling pathway, suggesting that SAC could be considered as a therapeutic drug for attenuating heat stress-induced mammary gland diseases.


Assuntos
Antioxidantes/farmacologia , Cisteína/análogos & derivados , Células Epiteliais/efeitos dos fármacos , Resposta ao Choque Térmico/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Bovinos , Células Cultivadas , Cisteína/farmacologia , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Glândulas Mamárias Animais/enzimologia , Glândulas Mamárias Animais/patologia , Transdução de Sinais
2.
Ecotoxicol Environ Saf ; 214: 112078, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33676053

RESUMO

It is well known that the dairy cow production is very sensitive to environmental factors, including high temperature, high humidity and radiant heat sources. High temperature-induced heat stress is the main environmental factor that causes oxidative stress and apoptosis, which affects the development of mammary glands in dairy cows. Dihydromyricetin (DMY) is a nature flavonoid compound extracted from Ampelopsis grossedentata; it has been shown to have various pharmacological functions, such as anti-inflammation, antitumor and liver protection. The present study aims to evaluate the protective effect of DMY on heat stress-induced dairy cow mammary epithelial cells (DCMECs) apoptosis and explore the potential mechanisms. The results show that heat stress triggers heat shock response and reduces cell viability in DCMECs; pretreatment of DCMECs with DMY (25 µM) for 12 h significantly alleviates the negative effects of heat stress on cells. DMY can provide cytoprotective effects by suppressing heat stress-caused mitochondrial membrane depolarization and mitochondrial dysfunction, Bax and Caspase 3 activity, and modulation of oxidative enzymes, thereby preventing ROS production and apoptosis in DCMECs. Importantly, DMY treatment could attenuate heat stress-induced mitochondrial fragmentation through mediating the expression of mitochondrial fission and fusion-related genes, including Dynamin related protein 1 (Drp1), Mitochondrial fission 1 protein (Fis1), and Mitofusin1, 2 (Mfn1, 2). Above all, our findings demonstrate that DMY could protect DCMECs against heat stress-induced injury through preventing oxidative stress, the imbalance of mitochondrial fission and fusion, which provides useful evidence that DMY can be a promising therapeutic drug for protecting heat stress-induced mammary glands injury and mastitis.


Assuntos
Flavonóis/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Dinaminas , Células Epiteliais/efeitos dos fármacos , Feminino , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
3.
J Biol Chem ; 293(33): 12793-12804, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29959227

RESUMO

The polycomb group (PcG) proteins are key epigenetic regulators in stem cell maintenance. PcG proteins have been thought to act through one of two polycomb repressive complexes (PRCs), but more recent biochemical analyses have challenged this model in the identification of noncanonical PRC1 (nc-PRC1) complexes characterized by the presence of Rybp or Yaf2 in place of the canonical Chromobox proteins. However, the biological significance of these nc-PRC1s and the potential mechanisms by which they mediate gene repression are largely unknown. Here, we explore the functional consequences of Yaf2 disruption on stem cell regulation. We show that deletion of Yaf2 results in compromised proliferation and abnormal differentiation of mouse embryonic stem cells (mESCs). Genome-wide profiling indicates Yaf2 functions primarily as a transcriptional repressor, particularly impacting genes associated with ectoderm cell fate in a manner distinct from Rybp. We confirm that Yaf2 assembles into a noncanonical PRC complex, with deletion analysis identifying the region encompassing amino acid residues 102-150 as required for this assembly. Furthermore, we identified serine 166 as a Yaf2 phosphorylation site, and we demonstrate that mutation of this site to alanine (S166A) compromises Ring1B-mediated H2A monoubiquitination and in turn its ability to repress target gene expression. We therefore propose that Yaf2 and its phosphorylation status serve as dual regulators to maintain the pluripotent state in mESCs.


Assuntos
Diferenciação Celular , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Proteínas Musculares/fisiologia , Complexo Repressor Polycomb 1/metabolismo , Proteínas Repressoras/fisiologia , Animais , Células Cultivadas , Cromatina/genética , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Fosforilação , Complexo Repressor Polycomb 1/genética
4.
J Dairy Res ; 86(4): 416-424, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31722754

RESUMO

Mastitis, a major infectious disease in dairy cows, is characterized by an inflammatory response to pathogens such as Escherichia coli and Staphylococcus aureus. To better understand the immune and inflammatory response of the mammary gland, we stimulated bovine mammary gland epithelial cells (BMECs) with E. coli-derived lipopolysaccharide (LPS). Using transcriptomic and proteomic analyses, we identified 1019 differentially expressed genes (DEGs, fold change ≥2 and P-value < 0.05) and 340 differentially expressed proteins (DEPs, fold change ≥1.3 and P-value < 0.05), of which 536 genes and 162 proteins were upregulated and 483 genes and 178 proteins were downregulated following exposure to LPS. These differentially expressed genes were associated with 172 biological processes; 15 Gene Ontology terms associated with response to stimulus, 4 associated with immune processes, and 3 associated with inflammatory processes. The DEPs were associated with 51 biological processes; 2 Gene Ontology terms associated with response to stimulus, 1 associated with immune processes, and 2 associated with inflammatory processes. Meanwhile, several pathways involved in mammary inflammation, such as Toll-like receptor, NF-κB, and NOD-like receptor signaling pathways were also represented. NLRP3 depletion significantly inhibited the expression of IL-1ß and PTGS2 by blocking caspase-1 activity in LPS-induced BMECs. These results suggest that NLR signaling pathways works in coordination with TLR4/NF-κB signaling pathways via NLRP3-inflammasome activation and pro-inflammatory cytokine secretion in LPS-induced mastitis. The study highlights the function of NLRP3 in an inflammatory microenvironment, making NLRP3 a promising therapeutic target in Escherichia coli mastitis.


Assuntos
Células Epiteliais/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Glândulas Mamárias Animais/citologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Bovinos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteômica , Transcriptoma
5.
J Reprod Dev ; 56(6): 639-42, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20814170

RESUMO

The aim of the present study was to predict fetal sex at different time points of gestation in cattle by detecting the fetal SRY gene in cow plasma. Plasma DNA was extracted from the blood samples of 110 pregnant cows during the gestational period of 30 to 242 days. Nested PCR was employed to detect the fetal SRY, which the male fetus carries exclusively, in cow plasma. The cows positive for SRY were predicted to carry male fetuses. The results showed that the fetal DNA from cow plasma was successfully amplified and that fetuses could be sexed with an overall accuracy rate of 100% (43/43) for males and 91.0% (61/67) for females and with accuracy rates of 100% (3/3) for males and 85.7% (12/14) for females at 30 EN 59 days of gestation and 100% (40/40) for males and 92.5% (49/53) for females at more than 2 months of gestation, respectively. This suggests that the molecular method developed here could be used in sex prediction for fetuses.


Assuntos
Bovinos/genética , DNA/sangue , Genes sry , Análise para Determinação do Sexo/veterinária , Animais , Bovinos/fisiologia , Indústria de Laticínios/métodos , Feminino , Melhoramento Genético , Idade Gestacional , Masculino , Reação em Cadeia da Polimerase/veterinária , Gravidez , Pré-Seleção do Sexo/veterinária
6.
In Vitro Cell Dev Biol Anim ; 56(4): 322-331, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32377999

RESUMO

Heat stress-induced reductions in milk yield and the dysfunction of mammary glands are economically important challenges that face the dairy industry, especially during summer. The aim of the present study is to investigate the effects of heat stress on mitochondrial function by using dairy cow mammary epithelial cells (DCMECs) as an in vitro model. Live cell imaging shows that the mitochondria continually change shape through fission and fusion. However, heat stress induces the fragmentation of mitochondria, as well as the decreased of ATP level, membrane potential, and anti-oxidant enzyme activity and the increased of respiratory chain complex I activity. In addition, the cytosolic Ca2+ concentration and cytochrome c expression (Cyto-c) were increased after heat stress treatment. Both qRT-PCR and western blot analysis indicate that mitofusin1/2 (Mfn1/2) and optic atrophy protein-1 (Opa-1) are downregulated after heat stress, whereas dynamin-related protein 1 (Drp1) and fission 1 (Fis-1) are upregulated, which explains the observed defect of mitochondrial network dynamics. Accordingly, the present study indicated that heat stress induced the dysfunction of DCMEC through disruption of the normal balance of mitochondrial fission and fusion.


Assuntos
Apoptose , Indústria de Laticínios , Células Epiteliais/patologia , Resposta ao Choque Térmico , Glândulas Mamárias Animais/patologia , Mitocôndrias/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Citocromos c/metabolismo , Transporte de Elétrons , Células Epiteliais/metabolismo , Feminino , Potencial da Membrana Mitocondrial , Dinâmica Mitocondrial , Estresse Oxidativo
7.
Cell Reprogram ; 20(1): 55-65, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29412739

RESUMO

An increasing number of studies have revealed that histone deacetylase (HDAC) mediated histone deacetylation is important for mammalian oocyte development. However, nonselective HDAC inhibitors (HDACi) were applied in most studies; the precise functions of specific HDAC classes during meiosis are poorly defined. In this study, the class IIa-specific HDACi MC1568 was used to reveal a crucial role of class IIa HDACs in the regulation of histone deacetylation during porcine oocyte meiosis. Besides, the functions of HDACs and histone acetyltransferases in regulating the balance of histone acetylation/deacetylation were also confirmed during oocyte maturation. After the validation of nontoxicity of MC1568 in maturation rate, spindle morphology, and chromosome alignment, effects of MC1568 on developmental competence of porcine somatic cell nuclear transfer (SCNT) embryos were evaluated, and data indicated that treatment with 10 µM MC1568 for 12 hours following electrical activation significantly enhanced the blastocyst rate and cell numbers. Moreover, results showed that optimal MC1568 treatment increased the H4K12 acetylation level in SCNT one cells and two cells. In addition, MC1568 treatment stimulated expression of the development-related genes OCT4, CDX2, SOX2, and NANOG in SCNT blastocysts. Collectively, our investigation uncovered a critical role of class IIa HDACs in the regulation of histone deacetylation during oocyte meiosis. Furthermore, for the first time, we showed that MC1568 can improve the in vitro development of porcine SCNT embryos. These findings provide an alternative HDACi for improving animal cloning efficiency and may shed more light on nuclear reprogramming.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Oócitos/efeitos dos fármacos , Pirróis/farmacologia , Acetilação/efeitos dos fármacos , Animais , Blastocisto/citologia , Reprogramação Celular/efeitos dos fármacos , Clonagem de Organismos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Código das Histonas/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Meiose/efeitos dos fármacos , Técnicas de Transferência Nuclear , Oócitos/citologia , Oócitos/metabolismo , Gravidez , Pirróis/administração & dosagem , Sus scrofa
8.
Dev Dyn ; 237(12): 3798-808, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19035346

RESUMO

Cyp26A1 is a major enzyme that controls retinoic acid (RA) homeostasis by metabolizing RA into bio-inactive metabolites. Previous research revealed that the mouse Cyp26A1 promoter has two canonical RA response elements (RAREs) that underlie the regulation of the gene by RA. Analyzing the 2,533-base pairs (2.5 k) genomic sequence upstream of zebrafish cyp26a1 start codon, we report that the two RAREs are conserved in zebrafish cyp26a1 promoter. Mutagenesis demonstrated that the two RAREs work synergistically in RA inducibility of cyp26a1. Fusing the 2.5 k (kilobase pairs) fragment to the enhanced yellow fluorescent protein (eYFP) reporter gene, we have generated two transgenic lines of zebrafish [Tg(cyp26a1:eYFP)]. The transgenic zebrafish display expression patterns similar to that of cyp26a1 gene in vivo. Consistent with the in vitro results, the reporter activity is RA inducible in embryos. Taken together, our results demonstrate that the 2.5 k fragment underlies the regulation of the zebrafish cyp26a1 gene by RA.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regiões Promotoras Genéticas/genética , Tretinoína/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Reporter/genética , Humanos , Mimetismo Molecular , Dados de Sequência Molecular , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ácido Retinoico 4 Hidroxilase , Peixe-Zebra/genética , Proteínas de Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA