RESUMO
Aluminum (Al) and manganese (Mn) toxicity are the top two constraints of crop production in acid soil. Crops have evolved common and specific mechanisms to tolerate the two stresses. In the present study, the responses (toxicity and tolerance) of near-isogenic wheat lines (ET8 and ES8) and their parents (Carazinho and Egret) to Al and Mn were compared by determining the physiological parameters and conducting transcriptome profiling of the roots. The results showed the following: (1) Carazinho and ET8 exhibited dual tolerance to Al and Mn compared to Egret and ES8, indicated by higher relative root elongation and SPAD. (2) After entering the roots, Al was mainly distributed in the roots and fixed in the cell wall, while Mn was mainly distributed in the cell sap and then transported to the leaves. Both Al and Mn stresses decreased the contents of Ca, Mg, and Zn; Mn stress also inhibited the accumulation of Fe, while Al showed an opposite effect. (3) A transcriptomic analysis identified 5581 differentially expressed genes (DEGs) under Al stress and 4165 DEGs under Mn stress. Among these, 2774 DEGs were regulated by both Al and Mn stresses, while 2280 and 1957 DEGs were exclusively regulated by Al stress and Mn stress, respectively. GO and KEGG analyses indicated that cell wall metabolism responds exclusively to Al, while nicotianamine synthesis exclusively responds to Mn. Pathways such as signaling, phenylpropanoid metabolism, and metal ion transport showed commonality and specificity to Al and Mn. Transcription factors (TFs), such as MYB, WRKY, and AP2 families, were also regulated by Al and Mn, and a weighted gene co-expression network analysis (WGCNA) identified PODP7, VATB2, and ABCC3 as the hub genes for Al tolerance and NAS for Mn tolerance. The identified genes and pathways can be used as targets for pyramiding genes and breeding multi-tolerant varieties.
RESUMO
Aluminum (Al) toxicity and low phosphorus availability (LP) are the top two co-existing edaphic constraints limiting agriculture productivity in acid soils. Plants have evolved versatile mechanisms to cope with the two stresses alone or simultaneously. However, the specific and common molecular mechanisms, especially those involving flavonoids and carbohydrate metabolism, remain unclear. Laboratory studies were conducted on two wheat genotypes-Fielder (Al-tolerant and P-efficient) and Ardito (Al-sensitive and P-inefficient)-exposed to 50 µM Al and 2 µM Pi (LP) in hydroponic solutions. After 4 days of stress, wheat roots were analyzed using transcriptomics and targeted metabolomics techniques. In Fielder, a total of 2296 differentially expressed genes (DEGs) were identified under Al stress, with 1535 upregulated and 761 downregulated, and 3029 DEGs were identified under LP stress, with 1591 upregulated and 1438 downregulated. Similarly, 4404 DEGs were identified in Ardito under Al stress, with 3191 upregulated and 1213 downregulated, and 1430 DEGs were identified under LP stress, with 1176 upregulated and 254 downregulated. GO annotation analysis results showed that 4079 DEGs were annotated to the metabolic processes term. These DEGs were significantly enriched in the phenylpropanoid, flavonoid, flavone and flavonol biosynthesis, and carbohydrate metabolism pathways by performing the KEGG enrichment analysis. The targeted metabolome analysis detected 19 flavonoids and 15 carbohydrate components in Fielder and Ardito under Al and LP stresses. In Fielder, more responsive genes and metabolites were involved in flavonoid metabolism under LP than Al stress, whereas the opposite trend was observed in Ardito. In the carbohydrate metabolism pathway, the gene and metabolite expression levels were higher in Fielder than in Ardito. The combined transcriptome and metabolome analysis revealed differences in flavonoid- and carbohydrate-related genes and metabolites between Fielder and Ardito under Al and LP stresses, which may contribute to Fielder's higher resistance to Al and LP. The results of this study lay a foundation for pyramiding genes and breeding multi-resistant varieties.
Assuntos
Alumínio , Regulação da Expressão Gênica de Plantas , Metabolômica , Fósforo , Transcriptoma , Triticum , Triticum/metabolismo , Triticum/genética , Alumínio/toxicidade , Fósforo/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolômica/métodos , Estresse Fisiológico/genética , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , MetabolomaRESUMO
Soybean is a rapidly growing agricultural crop, fueled by the rising global demand for animal feed, plant-based proteins and essential nutrients for human consumption. Soybeans contain a wide range of essential nutrients that are vital for health and may play a significant role in disease prevention. Their nutritious composition has led to a diverse range of soy-based foods and derivatives available on the market. A substantial amount of soybeans is allocated to the animal feed sector, human consumption, nutraceuticals and other industrial applications. Soybean has superior protein quality and digestibility compared to other legumes. It also contains abundant amounts of isoflavones, phytosterols and minerals that augment its nutritional value as a constituent of the human diet. Many different by-products are produced during the processing of soy. Due to a lack of sustainable food manufacturing practices, a sustainable amount of these by-products is discarded as waste, posing environmental challenges. Developing an effective waste management system for soybean by-products can help address public health concerns and provide a cost-efficient way to repurpose valuable components of soy, such as soy meal, okara and soy whey. Such valorization can mitigate the environmental impact of waste and contribute to malnutrition. This study aims to evaluate the sustainable use of soy by-products to help preserve biodiversity and reduce food insecurity. This article thoroughly examines the fundamental components of soybean use in the fields of health and soybean by-product processing. It provides a summary of cost-efficient, feasible and ideal processing technologies. © 2024 Society of Chemical Industry.
RESUMO
BACKGROUND: Sugarcane is an important sugar and economic crop in the world. Ratoon stunting Disease (RSD) of sugarcane, caused by Leifsonia xyli subsp. xyli, is widespread in countries and regions where sugarcane is grown and also limited to sugarcane productivity. Although the whole genome sequencing of Leifsonia xyli subsp. xyli was completed, progress in understanding the molecular mechanism of the disease has been slow because it is difficult to grow in culture. RESULTS: The Leifsonia xyli subsp. xyli membrane protein gene Lxx18460 (anti-sigma K) was cloned from the Lxx-infected sugarcane cultivar GT11 at the mature stage using RT-PCR technique, and the gene structure and expression in infected sugarcane were analyzed. The Lxx18460 gene was transformed into Nicotiana tabacum by Agrobacterium tumefaciens-mediation. The transgenic tobacco plants overexpressing Lxx18460 had lower levels in plant height, leaf area, net photosynthetic rate and endogenous hormones of IAA, ABA and GA3, as well as lower activities of three antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than the wild type (WT) tobacco. With the plant growth, the expression of Lxx18460 gene and protein was increased. To better understand the regulation of Lxx18460 expression, transcriptome analysis of leaves from transgenic and wild type tobacco was performed. A total of 60,222 all-unigenes were obtained through BGISEQ-500 sequencing. Compared the transgenic plants with the WT plants, 11,696 upregulated and 5949 downregulated genes were identified. These differentially expressed genes involved in many metabolic pathways including signal transduction, biosynthesis of other secondary metabolism, carbohydrate metabolism and so on. Though the data presented here are from a heterologous system, Lxx 18460 has an adverse impact on the growth of tobacco; it reduces the photosynthesis of tobacco, destroys the activity of defense enzymes, and affects the levels of endogenous hormones, which indicate that Lxx18460 may act important roles in the course of infection in sugarcane. CONCLUSIONS: This is the first study on analyzing the function of the membrane protein gene Lxx18460 of anti-sigma K (σK) factor in Leifsonia xyli subsp. xyli. Our findings will improve the understanding of the interaction between the RSD pathogen Leifsonia xyli subsp. xyli and sugarcane. The output of this study will also be helpful to explore the pathogenesis of RSD.
Assuntos
Actinomycetales/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Saccharum/microbiologia , Proteínas de Membrana/química , Folhas de Planta/genética , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Nicotiana/genética , TranscriptomaRESUMO
Ratoon stunt, caused by the bacterium Leifsonia xyli subsp. xyli, is one of the major sugarcane diseases worldwide. The objectives of this study were to determine the variation in morphology and DNA sequence of L. xyli subsp. xyli strains isolated in China, to compare the changes that occurred in vascular ultrastructure and levels of endogenous hormone abscisic acid (ABA), auxins (indoleacetic acid [IAA]), and gibberellic acids (GA3) in sugarcane stalks. Experiments were also conducted with two sugarcane varieties, 'ROC22' and 'Badila', in the greenhouse to understand the cytological and physiological mechanisms of L. xyli subsp. xyli-induced growth stunting. There were three treatments in the experiments: (i) healthy plants (L. xyli subsp. xyli-free plants), (ii) infected plants (L. xyli subsp. xyli-infected seedcanes treated with hot water, and (iii) infected plants (healthy seedcanes dipped in L. xyli subsp. xyli cell culture). The results showed that sequence coverage of a locally isolated strain, LxxGXBZ01, was 99.99%, and the average nucleotide identity between LxxGXBZ01 and the other well-characterized Brazilian isolate LxxCTCB07 was 93.61%. LxxGXBZ01 occurred in different sizes and shapes in xylem vessels of infected plants. In comparison with healthy stalks, the secondary walls of the vessel element in L. xyli subsp. xyli-infected stalks were degraded with uneven wall thickness, deformities, sticky substances, and electron-dense substances accumulated inside the cells. Compared with the healthy and hot-water treatments, the contents of IAA and GA3 were significantly lower, while that of ABA was significantly higher in the L. xyli subsp. xyli-infected stalks. The information obtained in this study will expand our understanding of ratoon stunt etiology and cytological and physiological bases of the disease manifestation.
RESUMO
Phosphorus (P) is an important nutrient for plants, and a lack of available P greatly limits plant growth and development. Phosphate-solubilizing microorganisms (PSMs) significantly enhance the ability of plants to absorb and utilize P, which is important for improving plant nutrient turnover and yield. This article summarizes and analyzes how PSMs promote the absorption and utilization of P nutrients by plants from four perspectives: the types and functions of PSMs, phosphate-solubilizing mechanisms, main functional genes, and the impact of complex inoculation of PSMs on plant P acquisition. This article reviews the physiological and molecular mechanisms of phosphorus solubilization and growth promotion by PSMs, with a focus on analyzing the impact of PSMs on soil microbial communities and its interaction with root exudates. In order to better understand the ability of PSMs and their role in soil P transformation and to provide prospects for research on PSMs promoting plant P absorption. PSMs mainly activate insoluble P through the secretion of organic acids, phosphatase production, and mycorrhizal symbiosis, mycorrhizal symbiosis indirectly activates P via carbon exchange. PSMs can secrete organic acids and produce phosphatase, which plays a crucial role in soil P cycling, and related genes are involved in regulating the P-solubilization ability. This article reviews the mechanisms by which microorganisms promote plant uptake of soil P, which is of great significance for a deeper understanding of PSM-mediated soil P cycling, plant P uptake and utilization, and for improving the efficiency of P utilization in agriculture.
RESUMO
Drought stress is a common hazard faced by sugarcane growth, and utilizing microorganisms to enhance plant tolerance to abiotic stress has become an important method for sustainable agricultural development. Several studies have demonstrated that Streptomyces chartreuses WZS021 improves sugarcane tolerance to drought stress. However, the molecular mechanisms underlying tolerance at the transcriptional and metabolomic levels remain unclear. We comprehensively evaluated the physiological and molecular mechanisms by which WZS021 enhances drought tolerance in sugarcane, by performing transcriptome sequencing and non-targeted metabolomics; and examining rhizosphere soil properties and plant tissue antioxidant capacity. WZS021 inoculation improved the rhizosphere nutritional environment (AP, ammonia, OM) of sugarcane and enhanced the antioxidant capacity of plant roots, stems, and leaves (POD, SOD, CAT). Comprehensive analyses of the transcriptome and metabolome revealed that WZS021 mainly affects plant drought tolerance through phenylalanine metabolism, plant hormone signal transduction, and flavonoid biosynthesis pathways. The drought tolerance signaling molecules mediated by WZS021 include petunidin, salicylic acid, α-Linoleic acid, auxin, geranylgeraniol and phenylalanine, as well as key genes related to plant hormone signaling transduction (YUCCA, amiE, AUX, CYPs, PAL, etc.). Interestingly, inoculation with WZS021 during regular watering induces a transcriptome-level response to biological stress in sugarcane plants. This study further elucidates a WZS021-dependent rhizosphere-mediated regulatory mechanism for improving sugarcane drought tolerance, providing a theoretical basis for increasing sugarcane production capacity.
RESUMO
Sugarcane is a significant primitive source of sugar and energy worldwide. The progress in enhancing the sugar content in sugarcane cultivars remains limited due to an insufficient understanding of specific genes related to sucrose production. The present investigation examined the enzyme activities, levels of reducing and non-reducing sugars, and transcript expression using RT-qPCR to assess the gene expression associated with sucrose metabolism in a high-sucrose sugarcane clone (GXB9) in comparison to a low-sucrose sister clone (B9). Sucrose phosphate synthase (SPS), sucrose phosphate phosphatase (SPP), sucrose synthase (SuSy), cell wall invertase (CWI), soluble acid invertase (SAI), and neutral invertase (NI) are essential enzymes involved in sucrose metabolism in sugarcane. The activities of these enzymes were comparatively quantified and analyzed in immature and maturing internodes of the high- and low-sucrose clones. The results showed that the higher-sucrose-accumulating clone had greater sucrose concentrations than the low-sucrose-accumulating clone; however, maturing internodes had higher sucrose levels than immature internodes in both clones. Hexose concentrations were higher in immature internodes than in maturing internodes for both clones. The SPS and SPP enzymes activities were higher in the high-sucrose-storing clone than in the low-sucrose clone. SuSy activity was higher in the low-sucrose clone than in the high-sucrose clone; further, the degree of SuSy activity was higher in immature internodes than in maturing internodes for both clones. The SPS gene expression was considerably higher in mature internodes of the high-sucrose clones than the low-sucrose clone. Conversely, the SuSy gene exhibited up-regulated expression in the low-sucrose clone. The enhanced expression of SPS in the high-sucrose clone compared to the low-sucrose clone suggests that SPS plays a major role in the increased accumulation of sucrose. These findings provide the opportunity to improve sugarcane cultivars by regulating the activity of genes related to sucrose metabolism using transgenic techniques.
RESUMO
Phosphorus (P) is a crucial macronutrient for plant growth and development. Basic metabolic processes regulate growth; however, the molecular detail of these pathways under low phosphorous (LP) in wheat is still unclear. This study aims to elucidate the varied regulatory pathways responses to LP stress in wheat genotypes. Phenotypic, physiological, and transcriptome analyses were conducted on Fielder (P efficient) and Ardito (P inefficient) wheat genotypes after four days of normal phosphorous (NP) and LP stress. In response to LP, Fielder outperformed Ardito, displaying higher chlorophyll content-SPAD values (13%), plant height (45%), stem diameter (12%), shoot dry weight (42%), and root biomass (75%). Root structure analysis revealed that Fielder had greater total root length (50%), surface area (56%), volume (15%), and diameter (4%) than Ardito under LP. These findings highlight Fielder's superior performance and adaptation to LP stress. Transcriptome analysis of wheat genotype roots identified 3029 differentially expressed genes (DEGs) in Fielder and 1430 in Ardito, highlighting LP-induced changes. Key DEGs include acid phosphatases (PAPs), phosphate transporters (PHT1 and PHO1), SPX, and transcription factors (MYB, bHLH, and WRKY). KEGG enrichment analysis revealed key pathways like plant hormones signal transduction, biosynthesis of secondary metabolites, and carbohydrate biosynthesis metabolism. This study unveils crucial genes and the intricate regulatory process in wheat's response to LP stress, offering genetic insights for enhancing plant P utilization efficiency.
Assuntos
Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Fósforo , Raízes de Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Fósforo/deficiência , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Adaptação Fisiológica/genética , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , FenótipoRESUMO
Introduction: Sugarcane endophytic nitrogen-fixing bacterium Klebsiella variícola DX120E displayed broad impact on growth, but the exact biological mechanism, especially polyamines (PAs) role, is still meager. Methods: To reveal this relationship, the content of polyamine oxidase (PAO), PAs, reactive oxygen species (ROS)-scavenging antioxidative enzymes, phytohormones, 1-aminocyclopropane-1-carboxylic synthase (ACS), chlorophyll content, and biomass were determined in sugarcane incubated with the DX120E strain. In addition, expression levels of the genes associated with polyamine metabolism were measured by transcriptomic analysis. Results: Genomic analysis of Klebsiella variícola DX120E revealed that 39 genes were involved in polyamine metabolism, transport, and the strain secrete PAs in vitro. Following a 7-day inoculation period, DX120E stimulated an increase in the polyamine oxidase (PAO) enzyme in sugarcane leaves, however, the overall PAs content was reduced. At 15 days, the levels of PAs, ROS-scavenging antioxidative enzymes, and phytohormones showed an upward trend, especially spermidine (Spd), putrescine (Put), catalase (CAT), auxin (IAA), gibberellin (GA), and ACS showed a significant up-regulation. The GO and KEGG enrichment analysis found a total of 73 differentially expressed genes, involving in the cell wall (9), stimulus response (13), peroxidase activity (33), hormone (14) and polyamine metabolism (4). Discussion: This study demonstrated that endophytic nitrogen-fixing bacteria stimulated polyamine metabolism and phytohormones production in sugarcane plant tissues, resulting in enhanced growth. Dual RNA-seq analyses provided insight into the early-stage interaction between sugarcane seedlings and endophytic bacteria at the transcriptional level. It showed how diverse metabolic processes selectively use distinct molecules to complete the cell functions under present circumstances.
RESUMO
Background: Biological nitrogen fixation (BNF) is a unique mechanism in which microorganisms utilize the nitrogenase enzyme to catalyze the conversion of atmospheric nitrogen (N2) to ammonia (NH3). Fe protein, encoded by the nifH gene, is an essential component of the nitrogenase in Klebsiella variicola DX120E. However, the function of this gene in regulating nitrogen fixing activity is still unclear. Objectives: The objective of this study was to reveal the function of nifH gene in associative nitrogen-fixing bacteria Klebsiella variicola DX120E and micro-sugarcane system by immunoassay and gene editing. Materials and Methods: In the current investigation, the nifH gene was cloned in a pET-30a (+) vector and expressed in Escherichia coli. The NifH protein was purified and used to immunize rabbit, and then the serum was collected and purified to obtain rabbit anti-NifH polyclonal antibodies. The CRISPR-Cas9 system was applied to produce nifH mutant strains, and the nitrogen-fixing enzyme activity, gene, and protein expression were analyzed. Results: Both in vitro and in vivo NifH proteins were detected by Western blotting, which were 43 and 32 kDa respectively. The expression of nifD and nifK genes was decreased, and nitrogenase activity was reduced in the nifH mutant strain. Conclusion: The nifH gene mutant weakened the nitrogenase activity by regulating the expression of Fe protein, which suggests a potential strategy to study the nitrogen fixation-related genes and the interactions between endophytic nitrogen-fixing bacteria and sugarcane.
RESUMO
Members of the genus Microbacterium lineage of Gram-positive actinobacteria are increasingly being reported to display significant traits associated with environmental biotechnology and bioengineering. 16SH is a nitrogen-fixing bacterial strain isolated from a surface-sterilized stem of sugarcane grown in Guangxi, China. Analysis of 16S rRNA gene sequences revealed that 16SH belonged to the genus Microbacterium. pPROBE-pTet(r) plasmids were constructed by cloning the promoter region of the Tet(r) gene into the promoterless pPROBE-AT, -OT, and -TT vectors derived from the pBBR1 plasmid that has a broad host range of Gram-negative bacteria and sequence similarities to plasmids from Gram-positive bacteria. The pPROBE-pTet(r) plasmids expressed the gfp reporter gene and were stably maintained in 16SH cells without antibiotic selection in free-living state and in planta. Confocal microscopy on intact roots of micropropagated sugarcane plantlets showed that gfp-tagged 16SH cells formed biofilms on root maturation and elongation zones but not on root meristem zones and root caps, and colonized in intercellular spaces of root cortices. Inoculation of 16SH significantly increased biomass and nitrogen content of micropropagated sugarcane seedlings grown with a nitrogen fertilization of 6.3 mg N/kg soil. ¹5N isotope dilution assays demonstrated that biological nitrogen fixation contributed to this plant growth promotion. This study for the first time demonstrated that the pBBR1-based pPROBE plasmids provided an efficient genetic transfer system for a Gram-positive Microbacterium strain, and that a nitrogen-fixing Microbacterium endophyte colonized in intact host plants and fixed N2 associated with the host plants.
Assuntos
Actinomycetales/crescimento & desenvolvimento , Actinomycetales/genética , Fixação de Nitrogênio , Raízes de Plantas/microbiologia , Plasmídeos/genética , Saccharum/microbiologia , Actinomycetales/isolamento & purificação , Actinomycetales/metabolismo , Biotecnologia/métodos , Endófitos , Microbiologia Ambiental , Técnicas de Transferência de Genes , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Raízes de Plantas/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Saccharum/crescimento & desenvolvimento , Análise de Sequência de DNARESUMO
Endophytic nitrogen-fixing bacteria are versatile and widely distributed in plants. Numerous strains of endophytic nitrogen-fixing bacteria are used as biofertilizers to minimize the utilization of chemical fertilizers, improve nutrient use efficiency, increase crop productivity, and reduce environmental pollution. However, the mechanism underlying the interaction between nitrogen-fixing bacteria and plants is still unclear. So, the present study was planned to assess the effects of endophytic nitrogen-fixing bacteria on sugarcane by analyzing the changes in physiological and biochemical activities. In the current study, Klebsiella variicola DX120E, an endophytic nitrogen-fixing bacterium, was inoculated on sugarcane varieties B8 and ROC22 to evaluate the effects on nitrogen and carbon metabolism-related enzymatic activity and biomass. Results showed that DX120E inoculation improved the enzymatic activities related to gluconeogenesis and nitrogen metabolism increased the sugarcane plant's height, cane juice Brix, biomass, chlorophyll, and soluble sugar content in sugarcane. Metabolomics analysis revealed that the metabolome modules were highly enriched in carbon and nitrogen metabolic pathways of strain-affected sugarcane than uninoculated control. The identified carbohydrates were associated with the glycolysis or gluconeogenesis and tricarboxylic acid (TCA) cycle in plants. Metabolomic profiling in the present investigation showed that carbohydrate metabolism is coordinated with nitrogen metabolism to provide carbon skeletons and energy to amino acid synthesis, and amino acid degradation results in several metabolites used by the citric acid cycle as an energy source. Moreover, differentially expressed metabolites of non-proteinogenic amino acids have a further complementary role to the action of endophytic nitrogen-fixing bacteria. Meanwhile, a significant difference in metabolites and metabolic pathways present in stems and leaves of B8 and ROC22 varieties was found. This study discovered the potential benefits of DX120E in sugarcane and suggested candidate regulatory elements to enhance interactions between nitrogen-fixing microbes and sugarcane.
RESUMO
Sugarcane is a significant crop plant with the capability of accumulating higher amount of sucrose. In the present study, a high sucrose content sugarcane mutant clone, GXB9, has been studied in comparison to the low sucrose mother clone B9 on morphological, agronomical and physiological level in order to scrutinize the variation because of mutation in GXB9 in field under normal environmental condition. The results showed that GXB9 has less germination, tillering rate, stalk height, leaf length, leaf width, leaf area, number of internodes, internode length and internode diameter than B9. Qualitative traits of leaf and stalk displayed significant variation between GXB9 and B9. Endogenous hormones quantity was also showed variation between the two clones. The relative SPAD reading and chlorophyll a, b concentrations also showed variation between GXB9 and B9. The photosynthetic parameter analysis indicated that the GXB9 has significantly higher net photosynthetic rate (Pn), stomatal conductance (gs) and transpiration rate (Tr) than B9. The qRT-PCR analysis of genes encoding enzymes like SPS, SuSy, CWIN, and CeS showed upregulation in GXB9 and downregulation in B9. However, these genes were significantly differentially expressed between the immature and maturing internodes of GXB9. The cane quality trait analysis showed that GXB9 had higher juice rate, juice gravity purity, brix, juice sucrose content and cane sucrose content than B9. The yield and component investigation results indicated that GXB9 had lower single stalk weight, however higher number of millable stalks per hectare than B9, and GXB9 had lower theoretical cane yield than B9. SSR marker analysis showed genetic variation between GXB9 and B9. This study has shown significant variation in the traits of GXB9 in comparison to B9 which advocates that GXB9 is a high sugar mutant clone of B9 and an elite source for future breeding.
Assuntos
Saccharum , Clorofila A , Feminino , Humanos , Mães , Melhoramento Vegetal , Saccharum/genética , Sacarose , AçúcaresRESUMO
Sugarcane ratoon stunting disease (RSD) caused by Leifsonia xyli subsp. xyli (Lxx) is a common destructive disease that occurs around the world. Lxx is an obligate pathogen of sugarcane, and previous studies have reported some physiological responses of RSD-affected sugarcane. However, the molecular understanding of sugarcane response to Lxx infection remains unclear. In the present study, transcriptomes of healthy and Lxx-infected sugarcane stalks and leaves were studied to gain more insights into the gene activity in sugarcane in response to Lxx infection. RNA-Seq analysis of healthy and diseased plants transcriptomes identified 107,750 unigenes. Analysis of these unigenes showed a large number of differentially expressed genes (DEGs) occurring mostly in leaves of infected plants. Sugarcane responds to Lxx infection mainly via alteration of metabolic pathways such as photosynthesis, phytohormone biosynthesis, phytohormone action-mediated regulation, and plant-pathogen interactions. It was also found that cell wall defense pathways and protein phosphorylation/dephosphorylation pathways may play important roles in Lxx pathogeneis. In Lxx-infected plants, significant inhibition in photosynthetic processes through large number of differentially expressed genes involved in energy capture, energy metabolism and chloroplast structure. Also, Lxx infection caused down-regulation of gibberellin response through an increased activity of DELLA and down-regulation of GID1 proteins. This alteration in gibberellic acid response combined with the inhibition of photosynthetic processes may account for the majority of growth retardation occurring in RSD-affected plants. A number of genes associated with plant-pathogen interactions were also differentially expressed in Lxx-infected plants. These include those involved in secondary metabolite biosynthesis, protein phosphorylation/dephosphorylation, cell wall biosynthesis, and phagosomes, implicating an active defense response to Lxx infection. Considering the fact that RSD occurs worldwide and a significant cause of sugarcane productivity, a better understanding of Lxx resistance-related processes may help develop tools and technologies for producing RSD-resistant sugarcane varieties through conventional and/or molecular breeding.
Assuntos
Actinobacteria/fisiologia , Infecções por Bactérias Gram-Positivas/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Saccharum/genética , Saccharum/microbiologia , Transcriptoma , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Infecções por Bactérias Gram-Positivas/microbiologia , Fotossíntese/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , RNA-Seq , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharum/metabolismo , Transdução de Sinais/genéticaRESUMO
To understand the beneficial interaction of sugarcane rhizosphere actinobacteria in promoting plant growth and managing plant diseases, this study investigated the potential role of sugarcane rhizospheric actinobacteria in promoting plant growth and antagonizing plant pathogens. We isolated 58 actinobacteria from the sugarcane rhizosphere, conducted plant growth-promoting (PGP) characteristics research, and tested the pathogenic fungi in vitro. Results showed that BTU6 (Streptomyces griseorubiginosus), the most representative strain, regulates plant defense enzyme activity and significantly enhances sugarcane smut resistance by regulating stress resistance-related enzyme (substances (POD, PAL, PPO, TP) in sugarcane) activity in sugarcane. The genomic evaluation indicated that BTU6 has the ability to biosynthesize chitinase, ß-1,3-glucanase, and various secondary metabolites and plays an essential role in the growth of sugarcane plants under biotic stress. Potential mechanisms of the strain in improving the disease resistance of sugarcane plants and its potential in biodegrading exogenous chemicals were also revealed. This study showed the importance of sugarcane rhizosphere actinobacteria in microbial ecology and plant growth promotion.
RESUMO
Plant endophytic bacteria have many vital roles in plant growth promotion (PGP), such as nitrogen (N) fixation and resistance to biotic and abiotic stresses. In this study, the seedlings of sugarcane varieties B8 (requires a low concentration of nitrogen for growth) and GT11 (requires a high concentration of nitrogen for growth) were inoculated with endophytic diazotroph Enterobacter roggenkampii ED5, which exhibits multiple PGP traits, isolated from sugarcane roots. The results showed that the inoculation with E. roggenkampii ED5 promoted the growth of plant significantly in both sugarcane varieties. 15N detection at 60 days post-inoculation proved that the inoculation with strain ED5 increased the total nitrogen concentration in the leaf and root than control in both sugarcane varieties, which was higher in B8. Biochemical parameters and phytohormones in leaf were analyzed at 30 and 60 days after the inoculation. The results showed that the inoculation with E. roggenkampii ED5 improved the activities of superoxide dismutase (SOD), catalase (CAT), NADH-glutamate dehydrogenase (NADH-GDH), glutamine synthetase (GS), and endo-ß-1,4-glucanase, and the contents of proline and indole acetic acid (IAA) in leaf, and it was generally more significant in B8 than in GT11. Tandem Mass Tags (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to perform comparative proteomic analysis in the sugarcane leaves at 30 days after inoculation with strain ED5. A total of 27,508 proteins were detected, and 378 differentially expressed proteins (DEPs) were found in the treated sugarcane variety B8 (BE) as compared to control (BC), of which 244 were upregulated and 134 were downregulated. In contrast, a total of 177 DEPs were identified in the treated sugarcane variety GT11 (GE) as compared to control (GC), of which 103 were upregulated and 74 were downregulated. The DEPs were associated with nitrogen metabolism, photosynthesis, starch, sucrose metabolism, response to oxidative stress, hydrolase activity, oxidative phosphorylation, glutathione metabolism, phenylpropanoid metabolic process, and response to stresses in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. To the best of our knowledge, this is the first proteomic approach to investigate the molecular basis of the interaction between N-fixing endophytic strain E. roggenkampii ED5 and sugarcane.
RESUMO
Sugarcane is the leading economic crop in China, requires huge quantities of nitrogen in the preliminary plant growth stages. However, the use of an enormous amount of nitrogen fertilizer increases the production price, and have detrimental results on the environment, causes severe soil and water pollution. In this study, a total of 175 endophytic strains were obtained from the sugarcane roots, belonging to five different species, i.e., Saccharum officinarum, Saccharum barberi, Saccharum robustum, Saccharum spontaneum, and Saccharum sinense. Among these, only 23 Enterobacter strains were chosen based on nitrogen fixation, PGP traits, hydrolytic enzymes production, and antifungal activities. Also, all selected strains were showed diverse growth range under different stress conditions, i.e., pH (5-10), temperature (20-45°C), and NaCl (7-12%) and 14 strains confirmed positive nifH, and 12 strains for acdS gene amplification, suggested that these strains could fix nitrogen along with stress tolerance properties. Out of 23 selected strains, Enterobacter roggenkampii ED5 was the most potent strain. Hence, this strain was further selected for comprehensive genome analysis, which includes a genome size of 4,702,851 bp and 56.05% of the average G + C content. Genome annotations estimated 4349 protein-coding with 83 tRNA and 25 rRNA genes. The CDSs number allocated to the KEGG, COG, and GO database were 2839, 4028, and 2949. We recognized a total set of genes that are possibly concerned with ACC deaminase activity, siderophores and plant hormones production, nitrogen and phosphate metabolism, symbiosis, root colonization, biofilm formation, sulfur assimilation and metabolism, along with resistance response toward a range of biotic and abiotic stresses. E. roggenkampii ED5 strain was also a proficient colonizer in sugarcane (variety GT11) and enhanced growth of sugarcane under the greenhouse. To the best of our knowledge, this is the first information on the whole-genome sequence study of endophytic E. roggenkampii ED5 bacterium associated with sugarcane root. And, our findings proposed that identification of predicted genes and metabolic pathways might describe this strain an eco-friendly bioresource to promote sugarcane growth by several mechanisms of actions under multi-stresses.
RESUMO
The study was designed to isolate and characterize Pseudomonas spp. from sugarcane rhizosphere, and to evaluate their plant- growth- promoting (PGP) traits and nitrogenase activity. A biological nitrogen-fixing microbe has great potential to replace chemical fertilizers and be used as a targeted biofertilizer in a plant. A total of 100 isolates from sugarcane rhizosphere, belonging to different species, were isolated; from these, 30 isolates were selected on the basis of preliminary screening, for in vitro antagonistic activities against sugarcane pathogens and for various PGP traits, as well as nitrogenase activity. The production of IAA varied from 312.07 to 13.12 µg mL-1 in tryptophan supplemented medium, with higher production in AN15 and lower in CN20 strain. The estimation of ACC deaminase activity, strains CY4 and BA2 produced maximum and minimum activity of 77.0 and 15.13 µmoL mg-1 h-1. For nitrogenase activity among the studied strains, CoA6 fixed higher and AY1 fixed lower in amounts (108.30 and 6.16 µmoL C2H2 h-1 mL-1). All the strains were identified on the basis of 16S rRNA gene sequencing, and the phylogenetic diversity of the strains was analyzed. The results identified all strains as being similar to Pseudomonas spp. Polymerase chain reaction (PCR) amplification of nifH and antibiotic genes was suggestive that the amplified strains had the capability to fix nitrogen and possessed biocontrol activities. Genotypic comparisons of the strains were determined by BOX, ERIC, and REP PCR profile analysis. Out of all the screened isolates, CY4 (Pseudomonas koreensis) and CN11 (Pseudomonas entomophila) showed the most prominent PGP traits, as well as nitrogenase activity. Therefore, only these two strains were selected for further studies; Biolog profiling; colonization through green fluorescent protein (GFP)-tagged bacteria; and nifH gene expression using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The Biolog phenotypic profiling, which comprised utilization of C and N sources, and tolerance to osmolytes and pH, revealed the metabolic versatility of the selected strains. The colonization ability of the selected strains was evaluated by genetically tagging them with a constitutively expressing GFP-pPROBE-pTetr-OT plasmid. qRT-PCR results showed that both strains had the ability to express the nifH gene at 90 and 120 days, as compared to a control, in both sugarcane varieties GT11 and GXB9. Therefore, our isolated strains, P. koreensis and P. entomophila may be used as inoculums or in biofertilizer production for enhancing growth and nutrients, as well as for improving nitrogen levels, in sugarcane and other crops. The present study, to the best of our knowledge, is the first report on the diversity of Pseudomonas spp. associated with sugarcane in Guangxi, China.
RESUMO
To explore the effects of sugarcane-soybean intercropping on cane yield, quality and economic benefit, three sugarcane cultivars (B8, ROC22 and GT21) planted under sugarcane monoculture and sugarcane-soybean intercropping with low nitrogen fertilization (urea application of 150 kg · hm(-2)). The field design was a split-plot with the cropping pattern being the principal factor and the sugarcane cultivar being the secondary factor. The results showed that the millable stalks, stalk diameter, cane yield and sugar production were significantly affected by sugarcane-soybean intercropping while the cane quality wasn' t changed obviously. Compared with sugarcane monoculture, the stalk diameter, millable stalks, cane yield and sugar production in the intercropping system were increased by 5.1%-8.7%, 7.9%-31.0%, 9.0%-40.5% and 5.6%-39.5%, respectively. The total incomes of cane and soybean, and sugar and soybean were increased by 58900-79300 yuan · hm(-2) and 58300-77200 yuan · hm(-2), respectively. Among the three sugarcane cultivars in the sugarcane-soybean intercropping pattern, the economic benefit was the highest in ROC22, while the ratoon cane yields of GT21 and B8 were higher than that of ROC22. The results also indicated that sugarcane-soybean intercropping is an effective planting method to reduce nitrogen fertilizer application and increase economic income in sugarcane production.