Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Toxicol Appl Pharmacol ; 484: 116859, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342443

RESUMO

When liver or intestinal function is impaired, bilirubin accumulates in the body and leads to neonatal jaundice. However, the potential negative effects caused by excessive accumulation of bilirubin such as developmental immunotoxicity and neurotoxicity remain unclear. We used a zebrafish model to establish bilirubin-induced jaundice symptoms and evaluated the toxic effects of bilirubin in aquatic organisms. Firstly, our results suggested that bilirubin exposure markedly decreased the survival rate, induced the developmental toxicity and increased the yellow pigment deposited in the zebrafish tail. Meanwhile, the number of macrophages and neutrophils was substantially reduced in a concentration-dependent manner. Besides, the antioxidant enzyme activities were greatly elevated while the inflammatory genes were significantly decreased after bilirubin exposure. Secondly, transcriptome analysis identified 708 genes were differentially expressed after bilirubin exposure, which animal organ morphogenesis, chemical synaptic transmission, and MAPK / mTOR signaling pathways were significantly enriched. Thirdly, bilirubin exposure leads to a significant decrease in the motility of zebrafish, including a dose-dependent decrease in the travelled distance, movement time, and average velocity. Moreover, the innate immune genes and apoptosis-related genes such as TLR4, NF-κB p65, STAT3 and p53 were elevated at a concentration of 10 µg/mL of bilirubin. Finally, our results further revealed that the anti-inflammatory and neuroprotective minocycline could partially rescue the bilirubin-induced neurobehavioral disorders in zebrafish embryos. In conclusion, our study explored the bilirubin-induced immunotoxicity and neurotoxicity in aquatic organisms, which will provide a theoretical basis for the treatment of neonatal jaundice in clinical practice.


Assuntos
Icterícia Neonatal , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Minociclina/farmacologia , Bilirrubina , Icterícia Neonatal/metabolismo , Imunidade Inata , Estresse Oxidativo , Antioxidantes/farmacologia , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade
2.
Ecotoxicol Environ Saf ; 278: 116415, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703406

RESUMO

The combined pollution of microplastics (MPs) and sulfamethoxazole (SMZ) often occurs in aquatic ecosystems, posing a serious threat to animal and human health. However, little is known about the liver damage caused by the single or co-exposure of MPs and SMZ, and its specific mechanisms are still poorly understood. In this study, we investigated the effects of co-exposure to 20 µm or 80 nm MPs and SMZ in both larval and adult zebrafish models. Firstly, we observed a significant decrease in the number of hepatocytes and the liver damage in larval zebrafish worsened following co-exposure to SMZ and MPs. Additionally, the number of macrophages and neutrophils decreased, while the expression of inflammatory cytokines and antioxidant enzyme activities increased after co-exposure in larval zebrafish. Transcriptome analysis revealed significant changes in gene expression in the co-exposed groups, particularly in processes related to oxidation-reduction, inflammatory response, and the MAPK signaling pathway in the liver of adult zebrafish. Co-exposure of SMZ and MPs also promoted hepatocyte apoptosis and inhibited proliferation levels, which was associated with the translocation of Nrf2 from the cytoplasm to the nucleus and an increase in protein levels of Nrf2 and NF-kB p65 in the adult zebrafish. Furthermore, our pharmacological experiments demonstrated that inhibiting ROS and blocking the MAPK signaling pathway partially rescued the liver injury induced by co-exposure both in larval and adult zebrafish. In conclusion, our findings suggest that co-exposure to SMZ and MPs induces hepatic dysfunction through the ROS-mediated MAPK signaling pathway in zebrafish. This information provides novel insights into the potential environmental risk of MPs and hazardous pollutants co-existence in aquatic ecosystems.


Assuntos
Microplásticos , Espécies Reativas de Oxigênio , Sulfametoxazol , Poluentes Químicos da Água , Peixe-Zebra , Animais , Sulfametoxazol/toxicidade , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fígado/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Larva/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos
3.
Fish Shellfish Immunol ; 134: 108644, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36842639

RESUMO

Cyhalofop-butyl (CyB) is a highly effective herbicide and is widely used for weed control in paddy fields. Because CyB is easily residual in the aquatic environment, its potential harm to aquatic organisms has attracted much attention and has not been fully understood. In this study, we systematically explored the hepatotoxic and immunotoxic effects of CyB exposure in zebrafish embryos. Firstly, CyB induced a decrease in the survival rate of zebrafish and led to a series of developmental abnormalities. Meanwhile, CyB can significantly reduce the size of zebrafish liver tissue and the number of hepatocytes in a dose-dependent manner. Secondly, the number of macrophages and neutrophils significantly decreased but the antioxidant enzyme activities such as CAT and MDA were greatly elevated upon CyB exposure. Thirdly, RNA-Seq analysis identified 1, 402 differentially expressed genes (DEGs) including 621 up-regulated and 781 down-regulated in zebrafish embryos after CyB exposure. KEGG and GO functional analysis revealed that the metabolic pathways of drug metabolism-cytochrome P450, biosynthesis of antibiotics, and metabolism of xenobiotics, along with oxidation-reduction process, high-density lipoprotein particle and cholesterol transport activity were significantly enriched after CyB exposure. Besides, hierarchical clustering analysis suggested that the genes involved in lipid metabolism, oxidative stress and innate immunity were largely activated in CyB-exposed zebrafish. Moreover, CyB induced zebrafish liver injury and increased hepatocyte apoptosis, which increased the protein expression levels of Bax, TLR4, NF-kB p65 and STAT3 in zebrafish. Finally, specific inhibition of TLR signaling pathway by TLR4 knock-down could significantly reduce the expression of inflammatory cytokines induced by CyB exposure. Taken together, these informations demonstrated that CyB could induce the hepatotoxicity and immunotoxicity in zebrafish embryos, and the expression levels of many genes involved in lipid metabolism and immune inflammation were obtained by RNA-Seq analysis. This study provides valuable information for future elucidating the aquatic toxicity of herbicide in aquatic ecosystems.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Herbicidas , Poluentes Químicos da Água , Animais , Peixe-Zebra , Receptor 4 Toll-Like , Ecossistema , Estresse Oxidativo , Antioxidantes/metabolismo , Herbicidas/toxicidade , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade
4.
Fish Shellfish Immunol ; 138: 108849, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37268155

RESUMO

Pexidartinib, a macrophage colony-stimulating factor receptor (CSF-1R) inhibitor, is indicated for the treatment of tendon sheath giant cell tumor (TGCT). However, few studies on the toxicity mechanisms of pexidartinib for embryonic development. In this study, the effects of pexidartinib on embryonic development and immunotoxicity in zebrafish were investigated. Zebrafish embryos at 6 h post fertilization (6 hpf) were exposed to 0, 0.5, 1.0, and 1.5 µM concentrations of pexidartinib, respectively. The results showed that different concentrations of pexidartinib induced the shorter body, decreased heart rate, reduced number of immune cells and increase of apoptotic cells. In addition, we also detected the expression of Wnt signaling pathway and inflammation-related genes, and found that these genes expression were significantly upregulated after pexidartinib treatment. To test the effects of embryonic development and immunotoxicity due to hyperactivation of Wnt signaling after pexidartinib treatment, we used IWR-1, Wnt inhibitor, for rescue. Results show that IWR-1 could not only rescue developmental defects and immune cell number, but also downregulate the high expression of Wnt signaling pathway and inflammation-related caused by pexidartinib. Collectively, our results suggest that pexidartinib induces the developmental toxicity and immunotoxicity in zebrafish embryos through hyperactivation of Wnt signaling, providing a certain reference for the new mechanisms of pexidartinib function.


Assuntos
Via de Sinalização Wnt , Peixe-Zebra , Animais , Peixe-Zebra/genética , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Inflamação/metabolismo , Embrião não Mamífero
5.
J Appl Toxicol ; 43(7): 1073-1082, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36755374

RESUMO

Roxadustat is a novel and effective small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PHI). However, little research has been done on its toxicity to vertebrate embryonic development. In this study, we used zebrafish to assess the effects of roxadustat on early embryonic development. Exposure to 14, 28, and 56 µM roxadustat resulted in abnormal embryonic development in zebrafish embryos, such as shortened body length and early liver developmental deficiency. Roxadustat exposure resulted in liver metabolic imbalance and abnormal liver tissue structure in adult zebrafish. In addition, roxadustat could up-regulate oxidative stress, and astaxanthin (AS) could partially rescue liver developmental defects by down-regulation of oxidative stress. After exposure to roxadustat, the Notch signaling is down-regulated, and the use of an activator of Notch signaling can partially rescue hepatotoxicity. Therefore, our research indicates that roxadustat may induce zebrafish hepatotoxicity by down-regulating Notch signaling. This study provides a reference for the clinical use of roxadustat.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Peixe-Zebra , Animais , Desenvolvimento Embrionário , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/etiologia
6.
Fish Shellfish Immunol ; 131: 119-126, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36195270

RESUMO

Pyrazosulfuron-ethyl is one of the most widely used herbicides in agriculture and can be widely detected in aquatic ecosystems. However, its biosafety, including its potential toxic effects on aquatic organisms and its mechanism, is still poorly understood. As an ideal vertebrate model, zebrafish, the effect of pyrazosulfuron-ethyl on early embryonic development and immunotoxicity of zebrafish can be well evaluated. From 10 to 72 h post fertilization (hpf), zebrafish embryos were exposed to 1, 5, and 9 mg/L pyrazosulfuron-ethyl which led in a substantial reduction in survival, total length, and heart rate, as well as a range of behavioral impairments. In zebrafish larvae, the number of neutrophils and macrophages was considerably decreased and oxidative stress levels increased in a dose-dependent way after pyrazosulfuron-ethyl exposure. And the expression of immune-related genes, such as TLR-4, MyD88 and IL-1ß, were downregulated by pyrazosulfuron-ethyl exposure. Moreover, pyrazosulfuron-ethyl exposure also inhibited motor behavior. Notch signaling was upregulated after exposure to pyrazosulfuron-ethyl, while inhibition of Notch signaling pathway could rescue immunotoxicity. Therefore, our findings suggest that pyrazosulfuron-ethyl has the potential to induce immunotoxicity and neurobehavioral changes in zebrafish larvae.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/genética , Embrião não Mamífero , Ecossistema , Pirazóis/toxicidade , Estresse Oxidativo , Larva , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
7.
Ecotoxicol Environ Saf ; 241: 113752, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35709675

RESUMO

Trifloxystrobin-tebuconazole (TFS-TBZ) is a novel, broad-spectrum fungicide that has been frequently detected in both the environment and agricultural products. However, its adverse effects on aquatic organisms remain unknown. In this study, the adverse effects of ecologically relevant TFS-TBZ concentrations (i.e., 75.0, 112.5, and 150.0 µg/L) on the heart and development of zebrafish were investigated. TFS-TBZ was found to substantially hinder development, inhibit growth, and cause significant abnormity at higher concentrations. Moreover, TFS-TBZ caused severe pericardial edema, heart loop failure, cardiac linearization, and ultra-slow heartbeat, implying that TFS-TBZ might induce congenital heart disease. TFS-TBZ inhibited Notch signaling and increased the intracellular generation of reactive oxygen species, resulting in decreased myocardial cell proliferation and increased apoptosis. The use of sodium valproate and Gadofullerene illustrated the relevance of the Notch signaling system and oxidative stress. Finally, TFS-TBZ exposure conveys severe developmental toxicity to the zebrafish heart. The underlying mechanism is regulation notch mediated-oxidative stress generation, implying that TFS-TBZ may be potentially hazardous to aquatic organisms in the environment.


Assuntos
Estresse Oxidativo , Peixe-Zebra , Acetatos , Animais , Embrião não Mamífero , Iminas , Estrobilurinas/toxicidade , Triazóis
8.
Environ Toxicol ; 37(6): 1310-1320, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35119177

RESUMO

Due to an increasing number of abused drugs dumped into the wastewater, more and more drugs are detected in the water environment, which may affect the survival of aquatic organisms. Lenvatinib is a multi-targeted tyrosine kinase inhibitor, and is clinically used to treat differentiated thyroid cancer, renal epithelial cell carcinoma and liver cancer. However, there are few reports on the effects of lenvatinib in embryos development. In this study, zebrafish embryos were used to evaluate the effect of lenvatinib on cardiovascular development. Well-developed zebrafish embryos were selected at 6 h post fertilization (hpf) and exposed to 0.05 mg/L, 0.1 mg/L and 0.2 mg/L lenvatinib up to 72 hpf. The processed embryos demonstrated cardiac edema, decreased heart rate, prolonged SV-BA distance, inhibited angiogenesis, and blocked blood circulation. Lenvatinib caused cardiac defects in the whole stage of cardiac development and increased the apoptosis of cardiomyocyte. Oxidative stress in the processed embryos was accumulated and inhibiting oxidative stress could rescue cardiac defects induced by lenvatinib. Additionally, we found that lenvatinib downregulated Notch signaling, and the activation of Notch signaling could rescue cardiac developmental defects and downregulate oxidative stress level induced by lenvatinib. Our results suggested that lenvatinib might induce cardiac developmental toxicity through inducing Notch mediated-oxidative stress generation, raising concerns about the harm of exposure to lenvatinib in aquatic organisms.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Cardiotoxicidade/metabolismo , Embrião não Mamífero , Estresse Oxidativo , Compostos de Fenilureia/toxicidade , Quinolinas , Poluentes Químicos da Água/metabolismo
9.
Environ Toxicol ; 36(10): 2062-2072, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34227734

RESUMO

Quercetin is a flavonoid compound with a variety of biological properties that is widely distributed throughout the plant kingdom. Studies have found that quercetin has anti-inflammatory, antioxidant, and liver-protective effects, while thioacetamide (TAA) can cause inflammation and liver damage in zebrafish larvae. The purpose of this study was to evaluate whether quercetin can prevent TAA-induced inflammation and liver damage in zebrafish larvae and to investigate the molecular mechanisms involved. Zebrafish Tg transgenic lines were used as the experimental animals. Behavioral, oxidative stress level, proliferative antigen chromogenic antibody, and western blot analyses were carried out on zebrafish larvae in the control group and groups treated with TAA and 12 µM quercetin. The results indicated that quercetin promoted the development of zebrafish larvae damaged by TAA, exhibited antioxidant and anti-inflammatory properties, and promoted cell proliferation. Quercetin reduced the expression of p53 protein in zebrafish larvae injured by TAA, resulting in decreased levels of Bax and increased levels of Bcl-2. The findings suggested quercetin has antiapoptotic action. Quercetin reduced the expression of DKK1 and DKK2 genes related to the Wnt signaling pathway in zebrafish larvae damaged by TAA and increased the expression of Lef1 and wnt2bb. Quercetin may regulate the development of zebrafish larvae damaged by TAA through the Wnt signaling pathway. This study provides the scientific basis for the development and utilization of quercetin and the development of new related drugs.


Assuntos
Quercetina , Tioacetamida , Animais , Antioxidantes/metabolismo , Larva , Fígado/metabolismo , Estresse Oxidativo , Quercetina/farmacologia , Tioacetamida/toxicidade , Peixe-Zebra
10.
Fish Shellfish Immunol ; 96: 114-121, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31786342

RESUMO

Our study investigated the effects of spinetoram on the developmental toxicity and immunotoxicity of zebrafish. 10 h post-fertilization (hpf) zebrafish embryos were exposed to several concentrations of spinetoram (0, 5.0 mg/L, 7.5 mg/L, 10 mg/L) for up to 96 hpf, and their mortality, heart rate, number of innate and adaptive immune cells, oxidative stress, apoptosis and gene expression were detected. Studies indicated that the spinetoram exposed zebrafish embryos showed yolk sac edema, slow growth, decreased heart rate, decreased number of immune cells, delayed thymic development and cell apoptosis. In addition, there were also significant changes in oxidative stress related indicators in zebrafish, the content of ROS and MDA and the activity of CAT and SOD increased with the increase of spinetoram concentration. Moreover, we detected the expression of TLR4 related genes including TLR4, MYD88 and NF-κB p65 which were significantly up-regulated in the treated groups. Meanwhile, we also found that pro-inflammatory factors IL-6, IL-8, IFN-γ and CXCL-c1c were up-regulated, but anti-inflammatory factor IL-10 was down-regulated in the treated groups. Briefly, our results show that spinetoram induces the developmental toxicity and immunotoxicity of zebrafish to a certain extent, providing basis for the further research on the molecular mechanism of spinetoram exposure to aquatic ecosystems.


Assuntos
Inseticidas/toxicidade , Macrolídeos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/imunologia , Animais , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/imunologia , Desenvolvimento Embrionário/efeitos dos fármacos
11.
Ecotoxicol Environ Saf ; 201: 110725, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32474209

RESUMO

Lincomycin hydrochloride is one of the commonly used drugs in clinic. However, it has many side effects on patients, and its mechanism is still poorly understood. In this study, 6 h post-fertilization (6 hpf) zebrafish embryos were exposed to several concentrations of lincomycin hydrochloride (15, 30, 60 µg/mL) for up to 24 or 96 hpf to detect their developmental toxicity and neurotoxicity, and to 6 days post-fertilization (6 dpf) to detect their behavioral toxicity. Our results showed that lincomycin hydrochloride could lead to embryonic head deformities (unclear ventricles, smaller ventricles, fewer new neurons). The studies showed that the frequency of spontaneous tail flick of zebrafish embryo increased at 24 hpf, and the lincomycin hydrochloride exposed zebrafish embryos showed increased heart rate, shorter body length, and yolk sac edema with severe pericardial edema at 96 hpf. The studies also showed that lincomycin hydrochloride increased oxidative stress level, Acetylcholinesterase (AChE) activity, ATPase activity and apoptosis in zebrafish larvae. In addition, the swimming behavior of zebrafish larvae decreased with the increase of lincomycin hydrochloride concentration, but the angular velocity and meandering degree increased, which might be due to the decreased activity of AChE and ATPase, as well as the decreased expression of genes related to neurodevelopment and neurotransmitter system, leading to the change of their motor behaviors. In summary, we found that lincomycin hydrochloride induced developmental toxicity and neurotoxicity in zebrafish larvae, contributing to a more comprehensive evaluation of the safety of the drug.


Assuntos
Lincomicina/toxicidade , Síndromes Neurotóxicas/etiologia , Acetilcolinesterase/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Síndromes Neurotóxicas/congênito , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra
12.
Fish Shellfish Immunol ; 95: 399-410, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31654769

RESUMO

Salvia plebeia R. Br. is a traditional Chinese medicinal herb that has been widely used for the treatment of many inflammatory diseases such as hepatitis. However, the underlying molecular mechanism about the hepatoprotective effects of S. plebeia remains largely unknown. Here, we investigated the antioxidant activities and anti-inflammatory effects of ethanol extracts of S. plebeia (SPEE) in the zebrafish model. Firstly, we determined the chemical compositions of SPEE and identified three major constituents by using GC-MS analysis. After that, SPEE exhibited significantly antioxidant properties in the LPS-induced zebrafish embryos, and the enzyme activities of ROS, CAT and SOD were obviously inhibited in a dose-dependent manner. Secondly, SPEE greatly reduced fat vacuoles (HE staining), lipid accumulation (Oil O staining) and hepatocyte fibrosis (Gemori staining) in the thioacetamide (TAA)-induced hepatocyte injury of adult zebrafish. Meanwhile, the NO contents and lipid metabolism-related genes were substantially down-regulated after SPEE exposure. Thirdly, we used RNA-Seq analysis to identify the differentially expressed genes (DEGs) after SPEE exposure in adult zebrafish liver. The results showed that 1289 DEGs including 558 up-regulated and 731 down-regulated were identified between the TAA + SPEE and TAA groups. KEGG pathway and GO functional analysis revealed that steroid biosynthesis, oxidation-reduction and innate immunity were significantly enriched. Mechanistically, SPEE can considerably reduce the cell apoptosis of hepatocytes and promote the translocation of Nrf2 protein from the nucleus to the cytoplasm in TAA-induced zebrafish. Moreover, SPEE can modulate various inflammatory cytokines and immune genes both in the control and H2O2-stimulated conditions. The pro-inflammatory cytokines such as IL-1ß and TNF-α was markedly up-regulated but the anti-inflammatory cytokines such as TGF-ß was greatly down-regulated after SPEE treatment. In addition, some key genes in the TLR signaling were also activated in the H2O2-stimulated conditions. In summary, our results suggested that SPEE had an important role in the antioxidant and anti-inflammatory effects in zebrafish in the near future. Some of the components identified in this study may be served as potential sources of new hepatoprotective compounds for the treatment of inflammatory diseases.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fígado/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Peixe-Zebra/fisiologia , Animais , Canfanos , Lipopolissacarídeos/efeitos adversos , Fígado/fisiologia , Panax notoginseng , Distribuição Aleatória , Salvia miltiorrhiza
13.
Fish Shellfish Immunol ; 86: 549-558, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30517881

RESUMO

Clethodim is one of the most widely used herbicides in agriculture, but its potential negative effects on aquatic organisms are still poorly understood. This study examined the effects of clethodim on zebrafish at aspects of early stage embryonic development, immune toxicity, cell apoptosis and locomotor behavior. Firstly, clethodim exposure markedly decreased the survival rate, body length, and heart rate and resulted in a series of morphological abnormalities, primarily spinal deformities (SD) and yolk sac edema, in zebrafish larvae. Secondly, the number of immune cells was substantially reduced but the levels of apoptosis and oxidative stress were significantly increased in a dose-dependent manner upon clethodim exposure. Thirdly, we evaluated the expression of some key genes in TLR signaling including TLR4, MyD88, and NF-κB p65 and they were all up-regulated by exposure to 300 µg/L clethodim. Meanwhile, some proinflammatory cytokines such as TNF-α, IL-1ß, IL8, and IFN-γ were also activated in both the mock and the TLR4-KD conditions. Moreover, the locomotor behaviors and the enzymatic activities of AChE were obviously inhibited but the levels of acetylated histone H3 were greatly increased by clethodim exposure. In addition, incubation of zebrafish larvae with acetylcholine receptor (AChR) agonist carbachol can partially rescue the clethodim-modulated locomotor behavior. Taken together, our results suggest that clethodim has the potential to induce developmental immunotoxicity and cause behavioral alterations in zebrafish larvae. The information presented in this study will help to elucidate the molecular mechanisms underlying clethodim exposure in aquatic ecosystems.


Assuntos
Cicloexanonas/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Herbicidas/toxicidade , Imunidade Inata/efeitos dos fármacos , Peixe-Zebra/imunologia , Animais , Apoptose/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Masculino , Movimento/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais , Receptores Toll-Like/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/embriologia
14.
BMC Genomics ; 16: 321, 2015 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26001831

RESUMO

BACKGROUND: Innate immunity is essential in defending against invading pathogens in invertebrates. The cotton bollworm, Helicoverpa armigera (Hübner) is one of the most destructive lepidopteran pests, which causes enormous economic losses in agricultural production worldwide. The components of the immune system are largely unknown in this insect. The application of entomopathogens is considered as an alternative to the chemical insecticides for its control. However, few studies have focused on the molecular mechanisms of host-pathogen interactions between pest insects and their pathogens. Here, we investigated the immunotranscriptome of H. armigera larvae and examined gene expression changes after pathogen infections. This study provided insights into the potential immunity-related genes and pathways in H. armigera larvae. RESULTS: Here, we adopted a high throughput RNA-seq approach to determine the immunotranscriptome of H. armigera larvae injected with buffer, fungal pathogen Beauveria bassiana, or Gram-negative bacterium Enterobacter cloacae. Based on sequence similarity to those homologs known to participate in immune responses in other insects, we identified immunity-related genes encoding pattern recognition receptors, signal modulators, immune effectors, and nearly all members of the Toll, IMD and JAK/STAT pathways. The RNA-seq data indicated that some immunity-related genes were activated in fungus- and bacterium-challenged fat body while others were suppressed in B. bassiana challenged hemocytes, including the putative IMD and JAK-STAT pathway members. Bacterial infection elevated the expression of recognition and modulator genes in the fat body and signal pathway genes in hemocytes. Although fat body and hemocytes both are important organs involved in the immune response, our transcriptome analysis revealed that more immunity-related genes were induced in the fat body than that hemocytes. Furthermore, quantitative real-time PCR analysis confirmed that, consistent with the RNA-seq data, the transcript abundances of putative PGRP-SA1, Serpin1, Toll-14, and Spz2 genes were elevated in fat body upon B. bassiana infection, while the mRNA levels of defensin, moricin1, and gloverin1 were up-regulated in hemocytes. CONCLUSIONS: In this study, a global survey of the host defense against fungal and bacterial infection was performed on the non-model lepidopteran pest species. The comprehensive sequence resource and expression profiles of the immunity-related genes in H. armigera are acquired. This study provided valuable information for future functional investigations as well as development of specific and effective agents to control this pest.


Assuntos
Perfilação da Expressão Gênica/métodos , Imunidade Inata , Proteínas de Insetos/genética , Mariposas/microbiologia , Análise de Sequência de RNA/métodos , Animais , Corpo Adiposo/imunologia , Corpo Adiposo/microbiologia , Regulação da Expressão Gênica , Hemócitos/imunologia , Hemócitos/microbiologia , Proteínas de Insetos/metabolismo , Larva/imunologia , Larva/microbiologia , Mariposas/genética , Mariposas/imunologia , Filogenia
15.
PLoS One ; 19(3): e0299385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478538

RESUMO

The Taihe Black-Bone silky fowl chicken (BB-sfc) is a renowned dietary and medicinal chicken globally recognized for its high nutritional and medicinal value. Compared to the local Black-Bone black-feathered chicken (BB-bfc), the Taihe silky fowl chicken has higher levels of amino acids, trace elements, and unsaturated fatty acids in their muscles, which offer anti-aging, anti-cancer, and immune enhancing benefits. Despite this, the unique nutritional components, genes, and proteins in Taihe silky fowl chicken muscles are largely unknown. Therefore, we performed a comprehensive transcriptome and proteome analysis of muscle development between BB-sfc and BB-bfc chickens using RNA-Seq and TMT-based quantitative proteomics methods. RNA-Seq analysis identified 286 up-regulated genes and 190 down-regulated genes in BB-sfc chickens, with oxidoreductase activity and electron transfer activity enriched in up-regulated genes, and phospholipid homeostasis and cholesterol transporter activity enriched in down-regulated genes. Proteome analysis revealed 186 significantly increased and 287 significantly decreased proteins in Taihe BB-sfc chicken muscles, primarily affecting mitochondrial function and oxidative phosphorylation, crucial for enhancing muscle antioxidant capacity. Integrated transcriptome and proteome analysis identified 6 overlapped up-regulated genes and 8 overlapped down-regulated genes in Taihe silky fowl chicken, related to improved muscle antioxidant status. Taken together, this research provides a comprehensive database of gene expression and protein information in Taihe Black-Bone silky fowl chicken muscles, aiding in fully exploring their unique economic value in the future.


Assuntos
Galinhas , Proteoma , Animais , Galinhas/genética , Proteoma/genética , Transcriptoma , Seda/genética , Antioxidantes , Músculos , China
16.
Environ Pollut ; 351: 124101, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710361

RESUMO

Both nanoplastics (NPs) and 3-tert-butyl-4-hydroxyanisole (3-BHA) are environmental contaminants that can bio-accumulate through the food chain. However, the combined effects of which on mammalian female reproductive system remain unclear. Here, the female ICR-CD1 mice were used to evaluate the damage effects of ovaries and uterus after NPs and 3-BHA co-treatment for 35 days. Firstly, co-exposure significantly reduced the body weight and organ index of ovaries and uterus in mice. Secondly, combined effects of NPs and 3-BHA exacerbated the histopathological abnormalities to the ovaries and uterus and decreased female sex hormones such as FSH and LH while increased antioxidant activities including CAT and GSH-Px. Moreover, the apoptotic genes, inflammatory cytokines and the key reproductive development genes such as FSTL1 were significantly up-regulated under co-exposure conditions. Thirdly, through transcriptional and bioinformatics analysis, immunofluorescence and western blotting assays, together with molecular docking simulation, we determined that co-exposure up-regulated the FSTL1, TGF-ß and p-Smad1/5/9 but down-regulated the expression of BMP4. Finally, the pharmacological rescue experiments further demonstrated that co-exposure of NPs and 3-BHA mainly exacerbated the female reproductive toxicity through FSTL1-mediated BMP4/TGF-ß/SMAD signaling pathway. Taken together, our studies provided the theoretical basis of new environmental pollutants on the reproductive health in female mammals.


Assuntos
Camundongos Endogâmicos ICR , Ovário , Poliestirenos , Útero , Animais , Feminino , Camundongos , Útero/efeitos dos fármacos , Útero/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Poliestirenos/toxicidade , Reprodução/efeitos dos fármacos , Microplásticos/toxicidade , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Nanopartículas/toxicidade , Simulação de Acoplamento Molecular , Poluentes Ambientais/toxicidade , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética
17.
Sci Total Environ ; 859(Pt 1): 160087, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36372181

RESUMO

Hexafluoropropylene oxide trimer acid (HFPO-TA), a novel alternative to perfluorooctanoic acid (PFOA), has emerged as a potential environmental pollutant. Here, to investigate the toxic effects of HFPO-TA on liver and biliary system development, zebrafish embryos were exposed to 0, 50, 100, or 200 mg/L HFPO-TA from 6 to 120 h post-fertilization (hpf). Results showed that the 50 % lethal concentration (LC50) of HFPO-TA was 231 mg/L at 120 hpf, lower than that of PFOA. HFPO-TA exposure decreased embryonic hatching, survival, and body length. Furthermore, HFPO-TA exerted higher toxicity at the specification stage than during the differentiation and maturation stages, leading to small-sized livers in Tg(fabp10a: DsRed) transgenic larvae and histopathological changes. Significant decreases in the mRNA expression of genes related to liver formation were observed. Alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and direct bilirubin (DBIL) levels were significantly increased. HFPO-TA decreased total cholesterol (TCHO) and triglyceride (TG) activities, disturbed lipid metabolism through the peroxisome proliferator-activated receptor (PPAR) pathway, and induced an inflammatory response. Furthermore, HFPO-TA inhibited intrahepatic biliary development in Tg(Tp1:eGFP) transgenic larvae and interfered with transcription of genes associated with biliary duct development. HFPO-TA reduced bile acid synthesis but increased bile acid transport, resulting in disruption of bile acid metabolism. Therefore, HFPO-TA influenced embryonic liver and biliary system morphogenesis, caused liver injury, and may be an unsafe alternative for PFOA.


Assuntos
Sistema Biliar , Fluorocarbonos , Animais , Peixe-Zebra , Fluorocarbonos/toxicidade , Fígado , Ácidos e Sais Biliares
18.
Toxicology ; 493: 153555, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236339

RESUMO

Cysteamine, a sulfhydryl compound, is an intermediate in the metabolism of coenzyme A to taurine in living organisms. However, the potential side effects of cysteamine such as hepatotoxicity in pediatric patients have been reported in some studies. To evaluate the impact of cysteamine on infants and children, larval zebrafish (a vertebrate model) were exposed to 0.18, 0.36 and 0.54 mM cysteamine from 72 hpf to 144 hpf. Alterations in general and pathological evaluation, biochemical parameters, cell proliferation, lipid metabolism factors, inflammatory factors and Wnt signaling pathway levels were examined. Increased liver area and lipid accumulation were observed in liver morphology, staining and histopathology in a dose-dependent manner with cysteamine exposure. In addition, the experimental cysteamine group exhibited higher alanine aminotransferase, aspartate aminotransferase, total triglyceride and total cholesterol levels than the control group. Meanwhile, the levels of lipogenesis-related factors ascended whereas lipid transport-related factors descended. Oxidative stress indicators such as reactive oxygen species, MDA and SOD were upregulated after cysteamine exposure. Afterwards, transcription assays revealed that biotinidase and Wnt pathway-related genes were upregulated in the exposed group, and inhibition of Wnt signaling partially rescued the abnormal liver development. The current study found that cysteamine-induced hepatotoxicity in larval zebrafish is due to inflammation and abnormal lipid metabolism, which is mediated by biotinidase (a potential pantetheinase isoenzyme) and Wnt signaling. This provides a perspective on the safety of cysteamine administration in children and identifies potential targets for protection against adverse reactions.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Transtornos do Metabolismo dos Lipídeos , Animais , Peixe-Zebra/metabolismo , Cisteamina/toxicidade , Cisteamina/metabolismo , Metabolismo dos Lipídeos , Biotinidase/metabolismo , Fígado , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/patologia , Estresse Oxidativo , Triglicerídeos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-36720376

RESUMO

As a powerful immunosuppressant, cyclosporine A (CsA) is widely used clinically. However, it has been found to have many side effects including nephrotoxicity and neurotoxicity. Despite this, some patients cannot avoid using CsA during pregnancy and this can be detrimental to both the patient and the foetus. This study used zebrafish as a model animal to evaluate the hepatotoxic effects of CsA in zebrafish embryos. Zebrafish embryos cultured at 72 post-fertilization (hpf) were exposed to three concentrations of CsA at 2.5 mg/L, 5 mg/L, and 10 mg/L for 72 h. Liver developmental defects, smaller or missing swim bladder, slower heart rate, reduced body length, and delayed yolk sac absorption were observed. The level of oxidative stress (ROS) increased with the increase of CsA concentration. The indicators of related oxidative stress kinase activities including malondialdehyde (MDA), catalase (CAT) and SOD, all appeared to significantly increased. The use of astaxanthin (ATX) to inhibit oxidative stress was found to be useful for rescuing zebrafish hepatic development defects. Therefore, our results suggest that CsA induces zebrafish embryonic hepatic development defects by activating the oxidative stress. The study of CsA-induced hepatic development defects of zebrafish embryos is helpful for clinical evaluation of the safety of CsA and enables the search for new use without side effects.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Peixe-Zebra , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ciclosporina/toxicidade , Larva , Estresse Oxidativo
20.
Aquat Toxicol ; 242: 106039, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34856462

RESUMO

Chlorogenic acid (CGA) is a phenylpropanoid compound that is well known to improve the antioxidant capacity and other biological activities. However, the roles of CGA in the liver development of organisms are unclear. In the present study, we aimed to investigate the function of CGA in the hepatic development in thioacetamide (TAA)-induced zebrafish embryos. We found that CGA exerted certain beneficial effects on zebrafish larvae from TAA-exposed zebrafish embryos, such as increasing the liver size, body length, heart rate, acetylcholinesterase activity, and motor ability. In addition, CGA displayed an antioxidant effect on TAA-induced zebrafish embryos by enhancing the activities of superoxide dismutase (SOD), catalase (CAT), and glucose-6-phosphate dehydrogenase (G6PDH), and decreasing of the contents of malondialdehyde (MDA), reactive oxygen species (ROS), and nitric oxide (NO). The results of western blotting analysis showed that CGA inhibited cell apoptosis by increasing the levels of Bcl2 apoptosis regulator and decreasing the levels of Bcl2 associated X (Bax), apoptosis regulator and tumor protein P53. Moreover, CGA promoted cell proliferation in TAA-induced zebrafish larvae, as detected using proliferating cell nuclear antigen fluorescence immunostaining. In addition, CGA inhibited the expression of Wnt signaling pathway genes Dkk1 (encoding Dickkopf Wnt signaling pathway inhibitors), and promoted the expression of Lef1 (encoding lymphoid enhancer binding factor 1) and Wnt2bb (encoding wingless-type MMTV integration site family, member 2Bb). When the Wnt signal inhibitor IWR-1 was added, there was no significant change in liver development in the IWR-1 + TAA group compared with the IWR-1 + TAA + CGA group (p <0.05), which suggested that CGA regulates liver development via Wnt signaling pathway. Overall, our results suggested that CGA might alleviate TAA-induced toxicity in zebrafish and promote liver development through the Wnt signaling pathway, which provides a basis for the therapeutic effect of CGA on liver dysplasia.


Assuntos
Ácido Clorogênico/farmacologia , Tioacetamida , Poluentes Químicos da Água , Via de Sinalização Wnt , Acetilcolinesterase/metabolismo , Animais , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Estresse Oxidativo , Tioacetamida/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA