Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446806

RESUMO

Cancer continues to pose a severe threat to global health, making pursuing effective treatments more critical than ever. Traditional therapies, although pivotal in managing cancer, encounter considerable challenges, including drug resistance, poor drug solubility, and difficulties targeting tumors, specifically limiting their overall efficacy. Nanomedicine's application in cancer therapy signals a new epoch, distinguished by the improvement of the specificity, efficacy, and tolerability of cancer treatments. This review explores the mechanisms and advantages of nanoparticle-mediated drug delivery, highlighting passive and active targeting strategies. Furthermore, it explores the transformative potential of nanomedicine in tumor therapeutics, delving into its applications across various treatment modalities, including surgery, chemotherapy, immunotherapy, radiotherapy, photodynamic and photothermal therapy, gene therapy, as well as tumor diagnosis and imaging. Meanwhile, the outlook of nanomedicine in tumor therapeutics is discussed, emphasizing the need for addressing toxicity concerns, improving drug delivery strategies, enhancing carrier stability and controlled release, simplifying nano-design, and exploring novel manufacturing technologies. Overall, integrating nanomedicine in cancer treatment holds immense potential for revolutionizing cancer therapeutics and improving patient outcomes.


Assuntos
Nanopartículas , Neoplasias , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Imunoterapia , Diagnóstico por Imagem , Nanopartículas/uso terapêutico
2.
Front Oncol ; 13: 1274048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876967

RESUMO

With the development of immunotherapy, the process of tumor treatment is also moving forward. Polysaccharides are biological response modifiers widely found in plants, animals, fungi, and algae and are mainly composed of monosaccharides covalently linked by glycosidic bonds. For a long time, polysaccharides have been widely used clinically to enhance the body's immunity. However, their mechanisms of action in tumor immunotherapy have not been thoroughly explored. Dendritic cells (DCs) are a heterogeneous population of antigen presenting cells (APCs) that play a crucial role in the regulation and maintenance of the immune response. There is growing evidence that polysaccharides can enhance the essential functions of DCs to intervene the immune response. This paper describes the research progress on the anti-tumor immune effects of natural polysaccharides on DCs. These studies show that polysaccharides can act on pattern recognition receptors (PRRs) on the surface of DCs and activate phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), Dectin-1/Syk, and other signalling pathways, thereby promoting the main functions of DCs such as maturation, metabolism, antigen uptake and presentation, and activation of T cells, and then play an anti-tumor role. In addition, the application of polysaccharides as adjuvants for DC vaccines, in combination with adoptive immunotherapy and immune checkpoint inhibitors (ICIs), as well as their co-assembly with nanoparticles (NPs) into nano drug delivery systems is also introduced. These results reveal the biological effects of polysaccharides, provide a new perspective for the anti-tumor immunopharmacological research of natural polysaccharides, and provide helpful information for guiding polysaccharides as complementary medicines in cancer immunotherapy.

3.
Front Pharmacol ; 14: 1036043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937874

RESUMO

Objectives: Compound Kushen injection (CKI) combined with intraperitoneal chemotherapy (IPC) is widely used in the treatment of malignant ascites (MA). However, evidence about its efficacy and safety remains limited. This review aimed to evaluate the efficacy and safety of CKI combined with IPC for the treatment of MA. Methods: Protocol of this review was registered in PROSPERO (CRD42022304259). Randomized controlled trials (RCTs) on the efficacy and safety of IPC with CKI for the treatment of patients with MA were searched through 12 electronic databases and 2 clinical trials registration platforms from inception until 20 January 2023. The Cochrane risk-of-bias tool was used to assess the quality of the included trials through the risk of bias assessment. We included RCTs that compared IPC single used or CKI combined with IPC for patients with MA schedule to start IPC. The primary outcome was identified as an objective response rate (ORR), while the secondary outcomes were identified as the quality of life (QoL), survival time, immune functions, and adverse drug reactions (ADRs). The Revman5.4 and Stata17 software were used to calculate the risk ratio (RR) at 95% confidence intervals (CI) for binary outcomes and the mean difference (MD) at 95% CI for continuous outcomes. The certainty of the evidence was assessed according to the GRADE criteria. Results: A total of 17 RCTs were assessed, which included 1200 patients. The risk of bias assessment of the Cochrane risk-of-bias tool revealed that one study was rated high risk and the remaining as unclear or low risk. Meta-analysis revealed that CKI combined with IPC had an advantage in increasing ORR (RR = 1.31, 95% CI 1.20 to 1.43, p < 0.00001) and QoL (RR = 1.50, 95% CI 1.23 to 1.83, p < 0.0001) when compared with IPC alone. Moreover, the combined treatment group showed a lower incidence of myelosuppression (RR = 0.51, 95%CI 0.40-0.64, p < 0.00001), liver dysfunction (RR = 0.33, 95%CI 0.16 to 0.70, p = 0.004), renal dysfunction (RR = 0.39, 95%CI 0.17 to 0.89, p = 0.02), and fever (RR = 0.51, 95%CI 0.35 to 0.75, p = 0.0007) compared to those of the control group. The quality of evidence assessment through GRADE criteria showed that ORR, myelosuppression, and fever were rated moderate, renal dysfunction and liver dysfunction were rated low, and QoL and abdominal pain were rated very low. Conclusion: The efficacy and safety of CKI combined with IPC were superior to that with IPC alone for the treatment of MA, which indicates the potentiality of the treatment. However, more high-quality RCTs are required to validate this conclusion. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022304259], identifier [PROSPERO 2022 CRD42022304259].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA