Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731444

RESUMO

With the increase of hexavalent Cr(VI) wastewater discharged from industrial production, it seriously pollutes water bodies and poses a risk to human health. Adsorption is used as an effective means to treat Cr(VI), but its effectiveness is affected by pH, and the adsorption performance decreases when acidity is strong. Furthermore, research on the mechanism of Cr(VI) adsorption using DFT calculations needs to be developed. This study focuses on the development of magnetically responsive core-shell nano-ion imprinted materials (Fe3O4@GO@IIP) through magnetic separation and surface imprinting techniques. Characterization techniques including FT-IR, XRD, and EDS confirmed the core-shell nanostructure of Fe3O4@GO@IIP. Batch adsorption experiments and model simulations demonstrated the exceptional adsorption capacity of Fe3O4@GO@IIP for Cr(VI) in strongly acidic solutions (pH = 1), reaching a maximum of 89.18 mg/g. The adsorption mechanism was elucidated through XPS and DFT calculations, revealing that Fe3O4@GO@IIP operates through electrostatic interactions and chemical adsorption, with charge transfer dynamics quantified during the process. This research provides new insights for addressing Cr(VI) treatment in highly acidic environments.

2.
Molecules ; 29(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38792259

RESUMO

The recovery of valuable gold from wastewater is of great interest because of the widespread use of the precious metal in various fields and the pollution generated by gold-containing wastes in water. In this paper, a water-insoluble cross-linked adsorbent material (TE) based on cyanuric chloride (TCT) and ethylenediamine (EDA) was designed and used for the adsorption of Au(III) from wastewater. It was found that TE showed extremely high selectivity (D = 49,213.46) and adsorption capacity (256.19 mg/g) for Au(III) under acidic conditions. The adsorption rate remained above 90% eVen after five adsorption-desorption cycles. The adsorption process followed the pseudo-first-order kinetic model and the Freundlich isotherm model, suggesting that physical adsorption with a multilayer molecular overlay dominates. Meanwhile, the adsorption mechanism was obtained by DFT calculation and XPS analysis, and the adsorption mechanism was mainly the electrostatic interaction and electron transfer between the protonated N atoms in the adsorbent (TE) and AuCl4-, which resulted in the redox reaction. The whole adsorption process was the result of the simultaneous action of physical and chemical adsorption. In conclusion, the adsorbent material TE shows great potential for gold adsorption and recovery.

3.
J Environ Manage ; 310: 114710, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35220096

RESUMO

A study on the intensification of ozone mass transfer in rotational flow field and UC-RF coupled-field was conducted. Two important operational parameters namely liquid flow rate and ultrasonic power, were optimized with regard to the ozone mass transfer efficiency. Results showed that the mass transfer coefficient (KLa) increased with liquid flow rate (up to 14 L min-1) and ultrasonic power (up to 1000 W). The maximum KLa value (1.0258 min-1) was obtained with the UC-RF coupled-field. Moreover, the reinforcement of mass transfer efficiency was promoted by the rotational flow field and UC-RF coupled-field due to the increase in the ozone-liquid contact area, intensification of turbulence, acceleration of interface renewal, and extension of residence time. Ozone microbubbles rose in the reactor in a spiral manner. In addition, the microbubbles produced in the rotational flow field served as cavitation nucleus that helped to generate the cavitation effect. The effective degradation of di-butyl phthalate (DBP) confirmed that its removal was improved by the ozone-liquid mass transfer and the promotion of hydroxyl radicals (·OH) production. The synergistic effect of DBP degradation via ultrasound-enhanced ozonation was significant.


Assuntos
Ozônio , Poluentes Químicos da Água , Dibutilftalato , Radical Hidroxila , Microbolhas , Ultrassom
4.
Environ Sci Pollut Res Int ; 30(24): 65712-65727, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37093372

RESUMO

In recent years, metal-organic frameworks (MOFs) have been employed in numerous applications for adsorption. Researchers synthesize new MOFs by various methods, including the introduction of functional groups. In this study, three different aluminum-based MOFs (with non-functionalized, amino-functionalized, nitro-functionalized) were produced by hydrothermal synthesis and used for investigating typical endocrine disrupting chemicals (EDCs), namely for bisphenol A (BPA) adsorption. We used several methods to characterize the MOFs and conducted batch adsorption experiments to investigate their adsorption properties, and explore the influence of different functional groups on adsorption materials. The specific surface area of Al-MOF-NH2 is 6 times larger than that of Al-MOF according to the N2 adsorption and desorption isotherms of the material, that is, the BET of Al-MOF, Al-MOF-NH2, and Al-MOF-NO2 were 109.68, 644.03, and 146.60 m2/g. Note that although the same synthesis method is used, pore size is greatly changed because of the different functional groups. Al-MOF and Al-MOF-NO2 have more mesopores, and Al-MOF-NH2 is mainly microporous. The BPA adsorption capacities of Al-MOF, Al-MOF-NH2, and Al-MOF-NO2 were 46.43, 227.78, and 155.84 mg/L. The outcomes can also be explained by the improved adsorption performance from the addition of amino functional groups. In this research, the adsorption isotherms and adsorption kinetics of the three Al-MOFs for BPA were also investigated to explain the different adsorption properties of various functional groups. The results show that the amino-functionalized materials have remarkable characterization morphologies, uniform particle distributions, appropriate particle sizes, excellent specific surface areas, and superior adsorption effects.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Alumínio/química , Adsorção , Dióxido de Nitrogênio , Água
5.
RSC Adv ; 11(23): 14017-14028, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35423921

RESUMO

A comprehensive assessment of a polytetrafluoroethylene (PTFE) hollow fiber membrane contactor and ultrasound for intensifying ozone-liquid mass transfer was conducted simultaneously. The initial part of the study concentrates on the systematic analysis of the previous literature related to the reinforcement on the ozone-liquid mass transfer. In this paper, the introduction of a membrane contactor and ultrasound as a catalyzer that increased the mass transfer coefficient (K L a) may be partially attributed to the increase of the net surface area and the decrease of the mass transfer resistance, thus leading to the enhancement of the ozone mass transfer rate and acceleration of the ozone decomposition in solution. Results revealed that the maximum value of the K L a value was 0.7858 min-1 in the PTFE hollow fiber membrane contactor in the presence of the ultrasound, while only 0.5154 min-1 in a single ozone aeration at an intake flow of 300 L h-1, ozone dosage of 32.38 mg L-1 and operating temperature of 293.15 K. A 52.46% improvement of the K L a value was obtained in the presence of the ultrasound. In addition, the dosage of sodium chloride appeared to have a positive correlation with K L a, but a negative correlation with the concentration of dissolved ozone. The sulfolane destruction by ozonation, ultrasound and the combination between the ozonation and ultrasound were performed to further verify the enhancement of the ozone mass transfer performance. It has been established that the O3/US combined process was a promising method, giving the maximum degradation of sulfolane (96.5%) with the synergistic index as 2.41.

6.
Environ Sci Pollut Res Int ; 27(21): 26532-26542, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32372354

RESUMO

Large amounts of fracturing flowback and wastewater with complex compositions are produced during hydraulic fracturing. Characterization of hydraulic fracturing flowback and produced water (HF-FPW) is an important initial step in efforts to determine a suitable treatment method for this type of wastewater. In the present study, fracturing flowback and produced water samples were obtained from well CN-F and well CN-E in the prophase and anaphase stages of the Changning shale gas mining area. Chemical characterization of inorganic and organic substances was then conducted. Metal contents were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES), and all inorganic anions involved were determined by ion chromatography. The organic pollutant components were analyzed in detail by combining Fourier transform infrared spectrometer (FTIR) and gas chromatography-mass spectrometer (GC-MS). Results showed that samples contained salt (TDS = 30,000-50,000 mg/L), metals (e.g., 650 ± 50 mg/L calcium), and total organic carbon (TOC = 32-178 mg/L). The organic substances detected in all samples could be divided into six categories, alkanes, aromatics, halogenated hydrocarbons, alcohols, esters, and ketones. C6-C21 straight-chain alkanes and C7-C13 naphthenes had the highest amount of organic matter, reaching more than 48%. The organic matter contained fracturing fluid additives, such as surfactants (e.g., ethylene glycol), and nitrotrichloromethane, which is a chlorinated product of some additives. These results provide information on the chemical composition of HF-FPW in Sichuan, China, as well as a basis for subsequent processing.


Assuntos
Fraturamento Hidráulico , Poluentes Químicos da Água/análise , China , Gás Natural , Águas Residuárias , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA