Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Lipid Res ; 65(7): 100579, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38880128

RESUMO

Sterol-regulatory element binding proteins (SREBPs) are a conserved transcription factor family governing lipid metabolism. When cellular cholesterol level is low, SREBP2 is transported from the endoplasmic reticulum to the Golgi apparatus where it undergoes proteolytic activation to generate a soluble N-terminal fragment, which drives the expression of lipid biosynthetic genes. Malfunctional SREBP activation is associated with various metabolic abnormalities. In this study, we find that overexpression of the active nuclear form SREBP2 (nSREBP2) causes caspase-dependent lytic cell death in various types of cells. These cells display typical pyroptotic and necrotic signatures, including plasma membrane ballooning and release of cellular contents. However, this phenotype is independent of the gasdermin family proteins or mixed lineage kinase domain-like (MLKL). Transcriptomic analysis identifies that nSREBP2 induces expression of p73, which further activates caspases. Through whole-genome CRISPR-Cas9 screening, we find that Pannexin-1 (PANX1) acts downstream of caspases to promote membrane rupture. Caspase-3 or 7 cleaves PANX1 at the C-terminal tail and increases permeability. Inhibition of the pore-forming activity of PANX1 alleviates lytic cell death. PANX1 can mediate gasdermins and MLKL-independent cell lysis during TNF-induced or chemotherapeutic reagents (doxorubicin or cisplatin)-induced cell death. Together, this study uncovers a noncanonical function of SREBPs as a potentiator of programmed cell death and suggests that PANX1 can directly promote lytic cell death independent of gasdermins and MLKL.


Assuntos
Morte Celular , Conexinas , Proteínas do Tecido Nervoso , Proteína de Ligação a Elemento Regulador de Esterol 2 , Humanos , Caspase 3/metabolismo , Caspase 7/metabolismo , Morte Celular/efeitos dos fármacos , Conexinas/metabolismo , Conexinas/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
2.
J Biol Chem ; 293(11): 4047-4055, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29374057

RESUMO

Cholesterol biosynthesis is tightly regulated in the cell. For example, high sterol concentrations can stimulate degradation of the rate-limiting cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, HMGCR). HMGCR is broken down by the endoplasmic reticulum membrane-associated protein complexes consisting of insulin-induced genes (Insigs) and the E3 ubiquitin ligase gp78. Here we found that HMGCR degradation is partially blunted in Chinese hamster ovary (CHO) cells lacking gp78 (gp78-KO). To identify other ubiquitin ligase(s) that may function together with gp78 in triggering HMGCR degradation, we performed a small-scale short hairpin RNA-based screening targeting endoplasmic reticulum-localized E3s. We found that knockdown of both ring finger protein 145 (Rnf145) and gp78 genes abrogates sterol-induced degradation of HMGCR in CHO cells. We also observed that RNF145 interacts with Insig-1 and -2 proteins and ubiquitinates HMGCR. Moreover, the tetrapeptide sequence YLYF in the sterol-sensing domain and the Cys-537 residue in the RING finger domain were essential for RNF145 binding to Insigs and RNF145 E3 activity, respectively. Of note, amino acid substitutions in the YLYF or of Cys-537 completely abolished RNF145-mediated HMGCR degradation. In summary, our study reveals that RNF145, along with gp78, promotes HMGCR degradation in response to elevated sterol levels and identifies residues essential for RNF145 function.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hidroximetilglutaril-CoA Redutases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteólise , Receptores do Fator Autócrino de Motilidade/metabolismo , Esteróis/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Retículo Endoplasmático/efeitos dos fármacos , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Receptores do Fator Autócrino de Motilidade/genética , Ubiquitina/metabolismo , Ubiquitinação
3.
Protein Cell ; 12(4): 279-296, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32666500

RESUMO

Sterol-regulatory element binding proteins (SREBPs) are the key transcriptional regulators of lipid metabolism. The activation of SREBP requires translocation of the SREBP precursor from the endoplasmic reticulum to the Golgi, where it is sequentially cleaved by site-1 protease (S1P) and site-2 protease and releases a nuclear form to modulate gene expression. To search for new genes regulating cholesterol metabolism, we perform a genome-wide CRISPR/Cas9 knockout screen and find that partner of site-1 protease (POST1), encoded by C12ORF49, is critically involved in the SREBP signaling. Ablation of POST1 decreases the generation of nuclear SREBP and reduces the expression of SREBP target genes. POST1 binds S1P, which is synthesized as an inactive protease (form A) and becomes fully mature via a two-step autocatalytic process involving forms B'/B and C'/C. POST1 promotes the generation of the functional S1P-C'/C from S1P-B'/B (canonical cleavage) and, notably, from S1P-A directly (non-canonical cleavage) as well. This POST1-mediated S1P activation is also essential for the cleavages of other S1P substrates including ATF6, CREB3 family members and the α/ß-subunit precursor of N-acetylglucosamine-1-phosphotransferase. Together, we demonstrate that POST1 is a cofactor controlling S1P maturation and plays important roles in lipid homeostasis, unfolded protein response, lipoprotein metabolism and lysosome biogenesis.


Assuntos
Proteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Sistemas CRISPR-Cas , Células HeLa , Humanos , Lipoproteínas/biossíntese , Lipoproteínas/genética , Lisossomos/genética , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Ligação a Elemento Regulador de Esterol/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA