Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134640

RESUMO

Stress-associated proteins (SAPs) are novel A20/AN1 zinc finger domain-containing proteins that are now favorable targets to improve abiotic stress tolerance in plants. However, the SAP gene family and their biological functions have not been identified in the important fruit crop apple (Malus × domestica Borkh.). We conducted a genome-wide analysis and cloning of this gene family in apple and determined that the overexpression of MdSAP15 enhances drought tolerance in Arabidopsis plants. We identified 30 SAP genes in the apple genome. Phylogenetic analysis revealed two major groups within that family. Results from sequence alignments and analyses of 3D structures, phylogenetics, genomics structure, and conserved domains indicated that apple SAPs are highly and structurally conserved. Comprehensive qRT-PCR analysis found various expression patterns for MdSAPs in different tissues and in response to a water deficit. A transgenic analysis showed that the overexpression of MdSAP15 in transgenic Arabidopsis plants markedly enhanced their tolerance to osmotic and drought stresses. Our results demonstrate that the SAP genes are highly conserved in plant species, and that MdSAP15 can be used as a target gene in genetic engineering approaches to improve drought tolerance.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Choque Térmico/genética , Malus/genética , Proteínas de Plantas/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Arabidopsis/classificação , Arabidopsis/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Sequência Conservada , Secas , Teste de Complementação Genética , Engenharia Genética/métodos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Malus/classificação , Malus/metabolismo , Modelos Moleculares , Pressão Osmótica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Estresse Fisiológico , Dedos de Zinco
2.
Chemosphere ; 349: 140870, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056716

RESUMO

Empirical information about the transport properties of neonicotinoid pesticides through the soil as affected by the ubiquitous low molecular weight organic acids (LMWOAs) is lacking. Herein, the impacts of three LMWOAs with different molecular structures, including citric acid, acetic acid, and malic acid, on the mobility characteristics of two typical neonicotinoid pesticides (Dinotefuran (DTF) and Nitenpyram (NTP)) were explored. Interestingly, under acidic conditions, different mechanisms were involved in transporting DTF and NTP by adding exogenous LMWOAs. Concretely, acetic acid and malic acid inhibited DTF transport, ascribed to the enhanced electrostatic attraction between DTF and porous media and the additional binding sites provided by the deposited LMWOAs. However, citric acid slightly enhanced DTF mobility due to the fact that the inhibitory effect was weakened by the steric hindrance effect induced by the deposited citric acid with a large molecular size. In comparison, all three LMWOAs promoted NTP transport at pH 5.0. Because the interaction between NTP with soil organic matter (e.g., via π-π stacking interaction) was masked by the LMWOAs coating on soil surfaces. Nevertheless, LMWOAs could promote the mobility of both neonicotinoid pesticides at pH 7.0 due to the steric hindrance effect caused by the deposited organic acids and the competitive retention between LMWOAs and pesticides for effective surface deposition sites of soil particles. Furthermore, the extent of the promotion effects of LMWOAs generally followed the order of citric acid > malic acid > acetic acid. This pattern was highly related to their molecular structures (e.g., number and type of functional groups and molecular size). Additionally, when the background solutions contained Ca2+, the bridging effect of cations also contributed to the transport-enhancement effects of LMWOAs. The findings provide valuable information about the mobility behaviors of neonicotinoid pesticides co-existing with LMWOAs in soil-water systems.


Assuntos
Poluentes do Solo , Solo , Estrutura Molecular , Solo/química , Porosidade , Compostos Orgânicos/química , Ácido Cítrico/química , Peso Molecular , Ácido Acético/farmacologia , Neonicotinoides , Poluentes do Solo/análise
3.
Front Pharmacol ; 13: 1036506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313360

RESUMO

PI3K/Akt, an essential signaling pathway widely present in cells, has been shown to be relevant to neurological disorders. As an important class of natural products, terpenoids exist in large numbers and have diverse backbones, so they have a great chance to be identified as neuroprotective agents. In this review, we described and summarized recent research for a range of terpenoid natural products associated with the PI3K/Akt pathway by classifying their basic chemical structures of the terpenes, identified by electronic searches on PubMed, Web of Science for research, and Google Scholar websites. Only articles published in English were included. Our discussion here concerned 16 natural terpenoids and their mechanisms of action, the associated diseases, and the methods of experimentation used. We also reviewed the discovery of their chemical structures and their derivatives, and some compounds have been concluded for their structure-activity relationships (SAR). As a result, terpenoids are excellent candidates for research as natural neuroprotective agents, and our content will provide a stepping stone for further research into these natural products. It may be possible for more terpenoids to serve as neuroprotective agents in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA