Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biochem Biophys Res Commun ; 496(2): 287-293, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29317208

RESUMO

Recent studies have highlighted recruiting and activating brite adipocytes in WAT (so-called "browning") would be an attractive anti-obesity strategy. Zinc alpha2 glycoprotein (ZAG) as an important adipokine, is reported to ameliorate glycolipid metabolism and lose body weight in obese mice. However whether the body reducing effect mediated by browning programme remains unclear. Here, we show that overexpression of ZAG in 3T3-L1 adipocytes enhanced expression of brown fat-specific markers (UCP-1, PRDM16 and CIDEA), mitochondrial biogenesis genes (PGC-1α, NRF-1/2 and mtTFA) and the key lipid metabolism lipases (ATGL, HSL, CPT1-A and p-acyl-CoA carboxylase). Additionally, those effects were dramaticlly abolished by H89/SB203580, revealing ZAG-induced browning depend on PKA and p38 MAPK signaling. Overall, our findings suggest that ZAG is a candidate therapeutic agent against obesity via induction of brown fat-like phenotype in white adipocytes.


Assuntos
Adipócitos Marrons/metabolismo , Proteínas de Transporte/genética , Regulação da Expressão Gênica , Glicoproteínas/genética , Metabolismo dos Lipídeos/genética , Células 3T3-L1 , Adipócitos Marrons/citologia , Adipócitos Marrons/efeitos dos fármacos , Adipocinas , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Carbono-Carbono Ligases/genética , Carbono-Carbono Ligases/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glicoproteínas/metabolismo , Imidazóis/farmacologia , Isoquinolinas/farmacologia , Lipase/genética , Lipase/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Piridinas/farmacologia , Transdução de Sinais , Sulfonamidas/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
2.
Int J Obes (Lond) ; 42(8): 1418-1430, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30006580

RESUMO

BACKGROUND/AIM: Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, impaired insulin sensitivity, and chronic low-grade inflammation. Our previous studies indicated that zinc alpha2 glycoprotein (ZAG) alleviates palmitate (PA)-induced intracellular lipid accumulation in hepatocytes. This study is to further characterize the roles of ZAG on the development of hepatic steatosis, insulin resistance (IR), and inflammation. METHODS: ZAG protein levels in the livers of NAFLD patients, high-fat diet (HFD)-induced or genetically (ob/ob) induced obese mice, and in PA-treated hepatocytes were determined by western blotting. C57BL/6J mice injected with an adenovirus expressing ZAG were fed HFD for indicated time to induce hepatic steatosis, IR, and inflammation, and then biomedical, histological, and metabolic analyses were conducted to identify pathologic alterations in these mice. The molecular mechanisms underlying ZAG-regulated hepatic steatosis were further explored and verified in mice and hepatocytes. RESULTS: ZAG expression was decreased in NAFLD patient liver biopsy samples, obese mice livers, and PA-treated hepatocytes. Simultaneously, ZAG overexpression alleviated intracellular lipid accumulation via upregulating adiponectin and lipolytic genes (FXR, PPARα, etc.) while downregulating lipogenic genes (SREBP-1c, LXR, etc.) in obese mice as well as in cultured hepatocytes. ZAG improved insulin sensitivity and glucose tolerance via activation of IRS/AKT signaling. Moreover, ZAG significantly inhibited NF-ĸB/JNK signaling and thus resulting in suppression of obesity-associated inflammatory response in hepatocytes. CONCLUSIONS: Our results revealed that ZAG could protect against NAFLD by ameliorating hepatic steatosis, IR, and inflammation.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Proteínas de Plasma Seminal/metabolismo , Animais , Humanos , Fígado/química , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas de Plasma Seminal/análise , Proteínas de Plasma Seminal/genética , Transdução de Sinais/genética , Regulação para Cima/genética , Glicoproteína Zn-alfa-2
3.
Int J Obes (Lond) ; 39(8): 1300-1309, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25907315

RESUMO

BACKGROUND/OBJECTIVES: Epidemics of obesity and diabetes are escalating. High-calorie/high-fat food is a major cause for these global health issues, but molecular mechanisms underlying high-fat, diet-induced obesity are still not well understood. The aryl hydrocarbon receptor (AhR), a transcription factor that acts as a xenobiotic sensor, mediates environmental toxicant-induced obesity, insulin resistance and development of diabetes. AhR also influences lipid metabolism and diet-induced obesity. The effects of AhR deficiency on diet-induced obesity, hepatic steatosis and insulin resistance were examined. METHODS: Male wild-type (WT), AhR null (AhR(-/-)) and AhR heterozygote (AhR(+/-)) mice were fed a normal chow diet (NCD, 10% kcal from fat) or a high-fat diet (HFD, 60% kcal from fat) for up to 14 weeks. Adiposity, adipose and liver morphology, insulin signaling, metabolic parameters and gene profiles were assessed. RESULTS: AhR deficiency protected against HFD-induced obesity, hepatic steatosis, insulin resistance and inflammation. Moreover, AhR deficiency preserved insulin signaling in major metabolic tissues. These protective effects result from a higher energy expenditure in AhR-deficient mice compared with WT. Levels of transcript for both the thermogenic gene, uncoupling protein 1 (Ucp1), in brown adipose tissue and mitochondrial ß-oxidation genes in muscle were significantly higher in AhR(-/-) and AhR(+/-) mice compared with WT. CONCLUSIONS: This work documents a physiologically relevant function for AhR in regulation of body weight, hepatic fat deposition, insulin sensitivity and energy expenditure under HFD exposure, suggesting that AhR signaling may be developed as a potential therapeutic target for treatment of obesity and metabolic disorders.


Assuntos
Tecido Adiposo/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Obesidade/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insulina/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Camundongos , Receptores de Hidrocarboneto Arílico/deficiência , Transdução de Sinais
4.
Carcinogenesis ; 35(3): 703-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24163404

RESUMO

Beta-naphthoflavone (BNF, DB06732) is an agonist of aryl hydrocarbon receptor (AhR) and a putative chemotherapeutic agent that has antitumor activity against mammary carcinomas in vivo. However, the mechanism by which BNF exerts this antitumor effect remains unclear. Thus, we explored mechanisms of BNF's antitumor effects in human breast cancer cells. This study showed that BNF suppressed cell proliferation and induced cell cycle arrest in the G0/G1 phase with downregulation of cyclin D1/D3 and CDK4 and upregulation of p21(Cip1/Waf1), leading to a senescence-like phenotype in estrogen receptor (ER)-positive MCF-7 cells, but not in ER-negative MDA-MB-231 cells. In addition, BNF inhibited PI3K/AKT signaling, and the PI3K inhibitor, LY294,002, exhibited the same inhibitory effects on cyclinD1/D3, CDK4 and the cell cycle as BNF. Interestingly, BNF activated mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) signaling, and more notably, MEK inhibitor PD98059 significantly blocked the BNF-induced cell cycle arrest and upregulation of p21(Cip1/Waf1). Furthermore, specific ERα and AhR siRNA studies indicate that ERα is required in BNF-induced p21(Cip1/Waf1) expression, and BNF-mediated cell cycle arrest and modulation of AKT and ERK signaling is AhR-dependent. Taken together, AhR-dependent inhibition of the PI3K/AKT pathway, activation of MAPK/ERK and modulation of ERα is a novel mechanism underlying BNF-mediated antitumor effects in breast cancer, which may represent a promising strategy to be exploited in future clinical trials.


Assuntos
Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/fisiologia , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta-Naftoflavona/farmacologia , Sequência de Bases , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Primers do DNA , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia
5.
Int J Mol Sci ; 15(7): 11700-12, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24987953

RESUMO

The rotation of the earth on its axis creates the environment of a 24 h solar day, which organisms on earth have used to their evolutionary advantage by integrating this timing information into their genetic make-up in the form of a circadian clock. This intrinsic molecular clock is pivotal for maintenance of synchronized homeostasis between the individual organism and the external environment to allow coordinated rhythmic physiological and behavioral function. Aryl hydrocarbon receptor (AhR) is a master regulator of dioxin-mediated toxic effects, and is, therefore, critical in maintaining adaptive responses through regulating the expression of phase I/II drug metabolism enzymes. AhR expression is robustly rhythmic, and physiological cross-talk between AhR signaling and circadian rhythms has been established. Increasing evidence raises a compelling argument that disruption of endogenous circadian rhythms contributes to the development of disease, including sleep disorders, metabolic disorders and cancers. Similarly, exposure to environmental pollutants through air, water and food, is increasingly cited as contributory to these same problems. Thus, a better understanding of interactions between AhR signaling and the circadian clock regulatory network can provide critical new insights into environmentally regulated disease processes. This review highlights recent advances in the understanding of the reciprocal interactions between dioxin-mediated AhR signaling and the circadian clock including how these pathways relate to health and disease, with emphasis on the control of metabolic function.


Assuntos
Relógios Circadianos , Dioxinas/toxicidade , Homeostase , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Doença Ambiental/etiologia , Doença Ambiental/metabolismo , Humanos , Transdução de Sinais
6.
Heliyon ; 10(7): e28957, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601682

RESUMO

Background: Cushing disease (CD) is a rare clinical neuroendocrine disease. CD is characterized by abnormal hypercortisolism induced by a pituitary adenoma with the secretion of adrenocorticotropic hormone. Individuals with CD usually exhibit atrophy of gray matter volume. However, little is known about the alterations in topographical organization of individuals with CD. This study aimed to investigate the structural covariance networks of individuals with CD based on the gray matter volume using graph theory analysis. Methods: High-resolution T1-weighted images of 61 individuals with CD and 53 healthy controls were obtained. Gray matter volume was estimated and the structural covariance network was analyzed using graph theory. Network properties such as hubs of all participants were calculated based on degree centrality. Results: No significant differences were observed between individuals with CD and healthy controls in terms of age, gender, and education level. The small-world features were conserved in individuals with CD but were higher than those in healthy controls. The individuals with CD showed higher global efficiency and modularity, suggesting higher integration and segregation as compared to healthy controls. The hub nodes of the individuals with CD were Short insular gyri (G_insular_short_L), Anterior part of the cingulate gyrus and sulcus (G_and_S_cingul-Ant_R), and Superior frontal gyrus (G_front_sup_R). Conclusions: Significant differences in the structural covariance network of patients with CD were found based on graph theory. These findings might help understanding the pathogenesis of individuals with CD and provide insight into the pathogenesis of this CD.

7.
Neuroimage Clin ; 37: 103361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36871404

RESUMO

OBJECTIVE: We aimed to explore the pathogenesis of traumatic coma related to functional connectivity (FC) within the default mode network (DMN), within the executive control network (ECN) and between the DMN and ECN and to investigate its capacity for predicting awakening. METHODS: We carried out resting-state functional magnetic resonance imaging (fMRI) examinations on 28 traumatic coma patients and 28 age-matched healthy controls. DMN and ECN nodes were split into regions of interest (ROIs), and node-to-node FC analysis was conducted on individual participants. To identify coma pathogenesis, we compared the pairwise FC differences between coma patients and healthy controls. Meanwhile, we divided the traumatic coma patients into different subgroups based on their clinical outcome scores at 6 months postinjury. Considering the awakening prediction, we calculated the area under the curve (AUC) to evaluate the predictive ability of changed FC pairs. RESULTS: We found a massive pairwise FC alteration in the patients with traumatic coma compared to the healthy controls [45% (33/74) pairwise FC located in the DMN, 27% (20/74) pairwise FC located in the ECN, and 28% (21/74) pairwise FC located between the DMN and ECN]. Moreover, in the awake and coma groups, there were 67% (12/18) pairwise FC alterations located in the DMN and 33% (6/18) pairwise FC alterations located between the DMN and ECN. We also indicated that pairwise FC that showed a predictive value of 6-month awakening was mainly located in the DMN rather than in the ECN. Specifically, decreased FC between the right superior frontal gyrus and right parahippocampal gyrus (in the DMN) showed the highest predictive ability (AUC = 0.827). CONCLUSION: In the acute phase of severe traumatic brain injury (sTBI), the DMN plays a more prominent role than the ECN and the DMN-ECN interaction in the emergence of traumatic coma and the prediction of 6-month awakening.


Assuntos
Lesões Encefálicas Traumáticas , Coma Pós-Traumatismo da Cabeça , Humanos , Coma/diagnóstico por imagem , Coma/etiologia , Função Executiva , Rede de Modo Padrão , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos
8.
World Neurosurg ; 148: e275-e281, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33412326

RESUMO

OBJECTIVE: Cushing disease (CD) is a rare clinical disease in which brain structural and function are impaired as the result of excessive cortisol. However, little is known whether rich-club organization changes in patients with CD, as visualized on resting-state magnetic resonance imaging (fMRI), can reverse to normal conditions after transsphenoidal surgery (TSS). In this study, we aimed to investigate whether the functional connectivity of rich-club organization is affected and whether any abnormal changes may reverse after TSS. METHODS: In this study, 38 patients with active CD, 33 with patients with CD in remission, and 41 age-, sex-, and education-matched healthy control participants underwent resting-state fMRI. Brain functional connectivity was constructed based on fMRI and rich club was calculated with graph theory approach. We constructed the functional brain networks for all participants and calculated rich-club connectivity based on fMRI. RESULTS: We identified left precuneus, right precuneus, left middle cingulum, right middle cingulum, right inferior temporal, right middle temporal, right lingual, right postcentral, right middle occipital, and right precentral regions as rich club nodes. Compared with healthy control participants, rich-club connectivity was significantly lower in patients with active CD (P < 0.001). Moreover, abnormal rich-club connectivity improved to normal after TSS. CONCLUSIONS: Our results show rich-club organization was disrupted in patients with active CD with excessive cortisol production. TSS can reverse abnormal rich-club connectivity. Rich club may be a new indicator to investigate the outcomes of TSS and to increase our understanding of the effect of excessive cortisol on brain functional connectivity in patients with CD.


Assuntos
Adenoma Hipofisário Secretor de ACT/cirurgia , Conectoma , Substância Cinzenta/patologia , Hipersecreção Hipofisária de ACTH/fisiopatologia , Neoplasias Hipofisárias/cirurgia , Adenoma Hipofisário Secretor de ACT/complicações , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Hidrocortisona/sangue , Hipofisectomia/métodos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Neuroimagem , Hipersecreção Hipofisária de ACTH/diagnóstico por imagem , Hipersecreção Hipofisária de ACTH/patologia , Hipersecreção Hipofisária de ACTH/cirurgia , Neoplasias Hipofisárias/complicações , Indução de Remissão , Osso Esfenoide/cirurgia , Adulto Jovem
9.
Aging (Albany NY) ; 12(6): 5168-5182, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32208364

RESUMO

To investigate the whole functional brain networks of active Cushing disease (CD) patients about topological parameters (small world and rich club et al.) and compared with healthy control (NC). Nineteen active CD patients and twenty-two healthy control subjects, matched in age, gender, and education, underwent resting-state fMRI. Graph theoretical analysis was used to calculate the functional brain network organizations for all participants, and those for active CD patients were compared for and NCs. Active CD patients revealed higher global efficiency, shortest path length and reduced cluster efficiency compared with healthy control. Additionally, small world organization was present in active CD patients but higher than healthy control. Moreover, rich club connections, feeder connections and local connections were significantly decreased in active CD patients. Functional network properties appeared to be disrupted in active CD patients compared with healthy control. Analyzing the changes that lead to abnormal network metrics will improve our understanding of the pathophysiological mechanisms underlying CD.


Assuntos
Encéfalo/fisiopatologia , Rede Nervosa/fisiopatologia , Hipersecreção Hipofisária de ACTH/fisiopatologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
10.
Aging (Albany NY) ; 12(7): 6306-6323, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271159

RESUMO

Intracerebral hemorrhage (ICH) is a common acute nervous system disease with high mortality and severe disability. Mesenchymal stem cells (MSCs) have been reported to promote neurogenesis and to alleviate side effects in areas of brain injury areas. The Hippo pathway regulates diverse cellular processes, including cell survival, proliferation, differentiation, and organ size. Here, we found that transplantation of bone marrow MSCs (BM-MSCs) into the brains of mice could alleviate ICH-mediated injury and protect astrocytes from apoptosis by regulating mammalian sterile 20-like kinase (MST)1 and Yes-associated protein (YAP). Knocking down of MST1 by si-RNA triggered YAP nuclear translocation. We further demonstrated that astrocytes undergo astroglial-mesenchymal phenotype switching and become capable of proliferating after BM-MSC transplantation via the Hippo signaling pathway. Together, our identification of the Hippo pathway in mediating the beneficial effects of BM-MSCs may provide a novel therapeutic target in the treatment and management of ICH.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Astrócitos/metabolismo , Lesões Encefálicas , Proteínas de Ciclo Celular/metabolismo , Hemorragia Cerebral/complicações , Transplante de Células-Tronco Mesenquimais/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/terapia , Sobrevivência Celular , Modelos Animais de Doenças , Via de Sinalização Hippo , Células-Tronco Mesenquimais , Camundongos , Transdução de Sinais , Resultado do Tratamento , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA