Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 85: 117273, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030194

RESUMO

GPR40 AgoPAMs are highly effective antidiabetic agents that have a dual mechanism of action, stimulating both glucose-dependent insulin and GLP-1 secretion. The early lipophilic, aromatic pyrrolidine and dihydropyrazole GPR40 AgoPAMs from our laboratory were highly efficacious in lowering plasma glucose levels in rodents but possessed off-target activities and triggered rebound hyperglycemia in rats at high doses. A focus on increasing molecular complexity through saturation and chirality in combination with reducing polarity for the pyrrolidine AgoPAM chemotype resulted in the discovery of compound 46, which shows significantly reduced off-target activities as well as improved aqueous solubility, rapid absorption, and linear PK. In vivo, compound 46 significantly lowers plasma glucose levels in rats during an oral glucose challenge yet does not demonstrate the reactive hyperglycemia effect at high doses that was observed with earlier GPR40 AgoPAMs.


Assuntos
Glicemia , Hiperglicemia , Ratos , Animais , Receptores Acoplados a Proteínas G , Peptídeo 1 Semelhante ao Glucagon , Hipoglicemiantes/farmacologia , Pirrolidinas/farmacologia , Pirrolidinas/química , Insulina
2.
Bioorg Med Chem Lett ; 50: 128325, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403724

RESUMO

Heart failure (HF) treatment remains a critical unmet medical need. Studies in normal healthy volunteers and HF patients have shown that [Pyr1]apelin-13, the endogenous ligand for the APJ receptor, improves cardiac function. However, the short half-life of [Pyr1]apelin-13 and the need for intravenous administration have limited the therapeutic potential for chronic use. We sought to identify potent, small-molecule APJ agonists with improved pharmaceutical properties to enable oral dosing in clinical studies. In this manuscript, we describe the identification of a series of pyrimidinone sulfones as a structurally differentiated series to the clinical lead (compound 1). Optimization of the sulfone series for potency, metabolic stability and oral bioavailability led to the identification of compound 22, which showed comparable APJ potency to [Pyr1]apelin-13 and exhibited an acceptable pharmacokinetic profile to advance to the acute hemodynamic rat model.


Assuntos
Receptores de Apelina/agonistas , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/farmacocinética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Animais , Área Sob a Curva , Fármacos Cardiovasculares/síntese química , Desenho de Fármacos , Meia-Vida , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Macaca fascicularis , Estrutura Molecular , Pirimidinonas/química , Pirimidinonas/farmacologia , Ratos , Relação Estrutura-Atividade
3.
Anal Biochem ; 568: 41-50, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605634

RESUMO

Apelin, the endogenous ligand for the APJ receptor, has generated interest due to its beneficial effects on the cardiovascular system. Synthesized as a 77 amino acid preproprotein, apelin is post-translationally cleaved to a series of shorter peptides. Though (Pyr)1apelin-13 represents the major circulating form in plasma, it is highly susceptible to proteolytic degradation and has an extremely short half-life, making it challenging to quantify. Literature reports of apelin levels in rodents have historically been determined with commercial ELISA kits which suffer from a lack of selectivity, recognizing a range of active and inactive isoforms of apelin peptide. (Pyr)1apelin-13 has demonstrated beneficial hemodynamic effects in humans, and we wished to evaluate if similar effects could be measured in pre-clinical models. Despite development of a highly selective LC/MS/MS method, in rodent studies where (Pyr)1apelin-13 was administered exogenously the peptide was not detectable until a detailed stabilization protocol was implemented during blood collection. Further, the inherent high clearance of (Pyr)1apelin-13 required an extended release delivery system to enable chronic dosing. The ability to deliver sustained doses and stabilize (Pyr)1apelin-13 in plasma allowed us to demonstrate for the first time the link between systemic concentration of apelin and its pharmacological effects in animal models.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacocinética , Peptídeos/análise , Animais , Cromatografia Líquida , Cães , Ensaio de Imunoadsorção Enzimática , Hemodinâmica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
4.
Bioorg Med Chem Lett ; 25(6): 1196-205, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25686852

RESUMO

The design, synthesis and structure-activity relationships of a novel series of 3,4-disubstituted pyrrolidine acid analogs as PPAR ligands is outlined. In both the 1,3- and 1,4-oxybenzyl pyrrolidine acid series, the preferred stereochemistry was shown to be the cis-3R,4S isomer, as exemplified by the potent dual PPARα/γ agonists 3k and 4i. The N-4-trifluoromethyl-pyrimidinyl pyrrolidine acid analog 4i was efficacious in lowering fasting glucose and triglyceride levels in diabetic db/db mice.


Assuntos
Hipoglicemiantes/síntese química , PPAR alfa/agonistas , PPAR gama/agonistas , Pirrolidinas/química , Animais , Glicemia/análise , Diabetes Mellitus Tipo 2/tratamento farmacológico , Desenho de Fármacos , Feminino , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Ligantes , Camundongos , Camundongos Obesos , PPAR alfa/metabolismo , PPAR gama/metabolismo , Pirrolidinas/síntese química , Pirrolidinas/uso terapêutico , Estereoisomerismo , Relação Estrutura-Atividade , Triglicerídeos/sangue
5.
Am J Respir Cell Mol Biol ; 50(1): 115-24, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23962082

RESUMO

ß-Agonists are the first-line therapy to alleviate asthma symptoms by acutely relaxing the airway. Purified components of ginger relax airway smooth muscle (ASM), but the mechanisms are unclear. By elucidating these mechanisms, we can explore the use of phytotherapeutics in combination with traditional asthma therapies. The objectives of this study were to: (1) determine if 6-gingerol, 8-gingerol, or 6-shogaol potentiate ß-agonist-induced ASM relaxation; and (2) define the mechanism(s) of action responsible for this potentiation. Human ASM was contracted in organ baths. Tissues were relaxed dose dependently with ß-agonist, isoproterenol, in the presence of vehicle, 6-gingerol, 8-gingerol, or 6-shogaol (100 µM). Primary human ASM cells were used for cellular experiments. Purified phosphodiesterase (PDE) 4D or phospholipase C ß enzyme was used to assess inhibitory activity of ginger components using fluorescent assays. A G-LISA assay was used to determine the effects of ginger constituents on Ras homolog gene family member A activation. Significant potentiation of isoproterenol-induced relaxation was observed with each of the ginger constituents. 6-Shogaol showed the largest shift in isoproterenol half-maximal effective concentration. 6-Gingerol, 8-gingerol, or 6-shogaol significantly inhibited PDE4D, whereas 8-gingerol and 6-shogaol also inhibited phospholipase C ß activity. 6-Shogaol alone inhibited Ras homolog gene family member A activation. In human ASM cells, these constituents decreased phosphorylation of 17-kD protein kinase C-potentiated inhibitory protein of type 1 protein phosphatase and 8-gingerol decreased myosin light chain phosphorylation. Isolated components of ginger potentiate ß-agonist-induced relaxation in human ASM. This potentiation involves PDE4D inhibition and cytoskeletal regulatory proteins. Together with ß-agonists, 6-gingerol, 8-gingerol, or 6-shogaol may augment existing asthma therapy, resulting in relief of symptoms through complementary intracellular pathways.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Proteínas do Citoesqueleto/metabolismo , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Extratos Vegetais/farmacologia , Zingiber officinale/química , Asma/tratamento farmacológico , Asma/metabolismo , Catecóis/farmacologia , Linhagem Celular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Álcoois Graxos/farmacologia , Proteínas de Choque Térmico HSP20/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Musculares , Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Cadeias Leves de Miosina/metabolismo , Fosfatidilinositóis/antagonistas & inibidores , Fosfatidilinositóis/metabolismo , Fosfolipase C beta/antagonistas & inibidores , Fosfolipase C beta/metabolismo , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Canais de Potássio/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
6.
Anal Chem ; 86(23): 11523-7, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25371986

RESUMO

Due to observed collision induced dissociation (CID) fragmentation inefficiency, developing sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assays for CID resistant compounds is especially challenging. As an alternative to traditional LC-MS/MS, we present here a methodology that preserves the intact analyte ion for quantification by selectively filtering ions while reducing chemical noise. Utilizing a quadrupole-Orbitrap MS, the target ion is selectively isolated while interfering matrix components undergo MS/MS fragmentation by CID, allowing noise-free detection of the analyte's surviving molecular ion. In this manner, CID affords additional selectivity during high resolution accurate mass analysis by elimination of isobaric interferences, a fundamentally different concept than the traditional approach of monitoring a target analyte's unique fragment following CID. This survivor-selected ion monitoring (survivor-SIM) approach has allowed sensitive and specific detection of disulfide-rich cyclic peptides extracted from plasma.


Assuntos
Dissulfetos/química , Peptídeos Cíclicos/sangue , Peptídeos Cíclicos/química , Cromatografia Líquida , Humanos , Íons/análise , Íons/química , Espectrometria de Massas em Tandem
7.
Am J Respir Cell Mol Biol ; 48(2): 157-63, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23065130

RESUMO

The prevalence of asthma has increased in recent years, and is characterized by airway hyperresponsiveness and inflammation. Many patients report using alternative therapies to self-treat asthma symptoms as adjuncts to short-acting and long-acting ß-agonists and inhaled corticosteroids (ICS). As many as 40% of patients with asthma use herbal therapies to manage asthma symptoms, often without proven efficacy or known mechanisms of action. Therefore, investigations of both the therapeutic and possible detrimental effects of isolated components of herbal treatments on the airway are important. We hypothesized that ginger and its active components induce bronchodilation by modulating intracellular calcium ([Ca(2+)](i)) in airway smooth muscle (ASM). In isolated human ASM, ginger caused significant and rapid relaxation. Four purified constituents of ginger were subsequently tested for ASM relaxant properties in both guinea pig and human tracheas: [6]-gingerol, [8]-gingerol, and [6]-shogaol induced rapid relaxation of precontracted ASM (100-300 µM), whereas [10]-gingerol failed to induce relaxation. In human ASM cells, exposure to [6]-gingerol, [8]-gingerol, and [6]-shogaol, but not [10]-gingerol (100 µM), blunted subsequent Ca(2+) responses to bradykinin (10 µM) and S-(-)-Bay K 8644 (10 µM). In A/J mice, the nebulization of [8]-gingerol (100 µM), 15 minutes before methacholine challenge, significantly attenuated airway resistance, compared with vehicle. Taken together, these novel data show that ginger and its isolated active components, [6]-gingerol, [8]-gingerol, and [6]-shogaol, relax ASM, and [8]-gingerol attenuates airway hyperresponsiveness, in part by altering [Ca(2+)](i) regulation. These purified compounds may provide a therapeutic option alone or in combination with accepted therapeutics, including ß(2)-agonists, in airway diseases such as asthma.


Assuntos
Cálcio/metabolismo , Músculo Liso/efeitos dos fármacos , Extratos Vegetais/farmacologia , Traqueia/efeitos dos fármacos , Zingiber officinale/química , Animais , Bradicinina/farmacologia , Células Cultivadas , Cricetinae , Humanos , Técnicas In Vitro , Masculino , Cloreto de Metacolina/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/metabolismo , Músculo Liso/fisiologia , Traqueia/metabolismo , Traqueia/fisiologia
8.
J Med Chem ; 65(5): 4291-4317, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35179904

RESUMO

Glucokinase (GK) is a key regulator of glucose homeostasis, and its small-molecule activators represent a promising opportunity for the treatment of type 2 diabetes. Several GK activators have been advanced into clinical trials and have demonstrated promising efficacy; however, hypoglycemia represents a key risk for this mechanism. In an effort to mitigate this hypoglycemia risk while maintaining the efficacy of the GK mechanism, we have investigated a series of amino heteroaryl phosphonate benzamides as ''partial" GK activators. The structure-activity relationship studies starting from a "full GK activator" 11, which culminated in the discovery of the "partial GK activator" 31 (BMS-820132), are discussed. The synthesis and in vitro and in vivo preclinical pharmacology profiles of 31 and its pharmacokinetics (PK) are described. Based on its promising in vivo efficacy and preclinical ADME and safety profiles, 31 was advanced into human clinical trials.


Assuntos
Azetidinas , Diabetes Mellitus Tipo 2 , Hipoglicemia , Organofosfonatos , Azetidinas/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucoquinase , Humanos , Hipoglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Organofosfonatos/farmacologia , Organofosfonatos/uso terapêutico
9.
Circ Heart Fail ; 14(3): e007351, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33663236

RESUMO

BACKGROUND: New heart failure therapies that safely augment cardiac contractility and output are needed. Previous apelin peptide studies have highlighted the potential for APJ (apelin receptor) agonism to enhance cardiac function in heart failure. However, apelin's short half-life limits its therapeutic utility. Here, we describe the preclinical characterization of a novel, orally bioavailable APJ agonist, BMS-986224. METHODS: BMS-986224 pharmacology was compared with (Pyr1) apelin-13 using radio ligand binding and signaling pathway assays downstream of APJ (cAMP, phosphorylated ERK [extracellular signal-regulated kinase], bioluminescence resonance energy transfer-based G-protein assays, ß-arrestin recruitment, and receptor internalization). Acute effects on cardiac function were studied in anesthetized instrumented rats. Chronic effects of BMS-986224 were assessed echocardiographically in the RHR (renal hypertensive rat) model of cardiac hypertrophy and decreased cardiac output. RESULTS: BMS-986224 was a potent (Kd=0.3 nmol/L) and selective APJ agonist, exhibiting similar receptor binding and signaling profile to (Pyr1) apelin-13. G-protein signaling assays in human embryonic kidney 293 cells and human cardiomyocytes confirmed this and demonstrated a lack of signaling bias relative to (Pyr1) apelin-13. In anesthetized instrumented rats, short-term BMS-986224 infusion increased cardiac output (10%-15%) without affecting heart rate, which was similar to (Pyr1) apelin-13 but differentiated from dobutamine. Subcutaneous and oral BMS-986224 administration in the RHR model increased stroke volume and cardiac output to levels seen in healthy animals but without preventing cardiac hypertrophy and fibrosis, effects differentiated from enalapril. CONCLUSIONS: We identify a novel, potent, and orally bioavailable nonpeptidic APJ agonist that closely recapitulates the signaling properties of (Pyr1) apelin-13. We show that oral APJ agonist administration induces a sustained increase in cardiac output in the cardiac disease setting and exhibits a differentiated profile from the renin-angiotensin system inhibitor enalapril, supporting further clinical evaluation of BMS-986224 in heart failure.


Assuntos
Receptores de Apelina/agonistas , Débito Cardíaco/efeitos dos fármacos , Insuficiência Cardíaca/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Volume Sistólico/efeitos dos fármacos , Animais , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Células CHO , Cricetulus , Cães , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Haplorrinos , Humanos , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação , Ensaio Radioligante , Ratos , Trítio , Pressão Ventricular/efeitos dos fármacos , beta-Arrestinas/efeitos dos fármacos , beta-Arrestinas/metabolismo
10.
J Med Chem ; 64(6): 3086-3099, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33689340

RESUMO

Apelin-13 is an endogenous peptidic agonist of the apelin receptor (APJ) receptor with the potential for improving cardiac function in heart failure patients. However, the low plasma stability of apelin-13 necessitates continuous intravenous infusion for therapeutic use. There are several approaches to increase the stability of apelin-13 including attachment of pharmacokinetic enhancing groups, stabilized peptides, and Fc-fusion approaches. We sought a small-molecule APJ receptor agonist approach to target a compound with a pharmacokinetic profile amenable for chronic oral administration. This manuscript describes sequential optimization of the pyrimidinone series, leading to pyridinone 14, with in vitro potency equivalent to the endogenous ligand apelin-13 and with an excellent oral bioavailability and PK profile in multiple preclinical species. Compound 14 exhibited robust pharmacodynamic effects similar to apelin-13 in an acute rat pressure-volume loop model and was advanced as a clinical candidate.


Assuntos
Receptores de Apelina/agonistas , Piridonas/química , Piridonas/farmacologia , Animais , Receptores de Apelina/metabolismo , Cães , Descoberta de Drogas , Haplorrinos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Modelos Moleculares , Piridonas/farmacocinética , Ratos , Ratos Sprague-Dawley
11.
J Med Chem ; 64(21): 15549-15581, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34709814

RESUMO

The oxycyclohexyl acid BMS-986278 (33) is a potent lysophosphatidic acid receptor 1 (LPA1) antagonist, with a human LPA1 Kb of 6.9 nM. The structure-activity relationship (SAR) studies starting from the LPA1 antagonist clinical compound BMS-986020 (1), which culminated in the discovery of 33, are discussed. The detailed in vitro and in vivo preclinical pharmacology profiles of 33, as well as its pharmacokinetics/metabolism profile, are described. On the basis of its in vivo efficacy in rodent chronic lung fibrosis models and excellent overall ADME (absorption, distribution, metabolism, excretion) properties in multiple preclinical species, 33 was advanced into clinical trials, including an ongoing Phase 2 clinical trial in patients with lung fibrosis (NCT04308681).


Assuntos
Descoberta de Drogas , Fibrose Pulmonar/tratamento farmacológico , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Masculino , Camundongos , Estrutura Molecular , Fibrose Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Ácidos Lisofosfatídicos/metabolismo , Relação Estrutura-Atividade
12.
Bioorg Med Chem Lett ; 19(5): 1451-6, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19201606

RESUMO

The design, synthesis and structure-activity relationships of a novel series of N-phenyl-substituted pyrrole, 1,2-pyrazole and 1,2,3-triazole acid analogs as PPAR ligands are outlined. The triazole acid analogs 3f and 4f were identified as potent dual PPARalpha/gamma agonists both in binding and functional assays in vitro. The 3-oxybenzyl triazole acetic acid analog 3f showed excellent glucose and triglyceride lowering in diabetic db/db mice.


Assuntos
Azóis/síntese química , Desenho de Fármacos , PPAR alfa/agonistas , PPAR gama/agonistas , Animais , Azóis/farmacologia , Linhagem Celular/enzimologia , Cristalografia por Raios X , Feminino , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Transgênicos , PPAR alfa/metabolismo , PPAR gama/metabolismo , Relação Estrutura-Atividade
13.
Clin Cancer Res ; 14(9): 2701-9, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18451235

RESUMO

PURPOSE: To determine if ixabepilone is a substrate for cytochrome P450 3A4 (CYP3A4) and if its metabolism by this cytochrome is clinically important, we did a clinical drug interaction study in humans using ketoconazole as an inhibitor of CYP3A4. EXPERIMENTAL DESIGN: Human microsomes were used to determine the cytochrome P450 enzyme(s) involved in the metabolism of ixabepilone. Computational docking (CYP3A4) studies were done for epothilone B and ixabepilone. A follow-up clinical study was done in patients with cancer to determine if 400 mg/d ketoconazole (inhibitor of CYP3A4) altered the pharmacokinetics, drug-target interactions, and pharmacodynamics of ixabepilone. RESULTS: Molecular modeling and human microsomal studies predicted ixabepilone to be a good substrate for CYP3A4. In patients, ketoconazole coadministration resulted in a maximum ixabepilone dose administration to 25 mg/m(2) when compared with single-agent therapy of 40 mg/m(2). Coadministration of ketoconazole with ixabepilone resulted in a 79% increase in AUC(0-infinity). The relationship of microtubule bundle formation in peripheral blood mononuclear cells to plasma ixabepilone concentration was well described by the Hill equation. Microtubule bundle formation in peripheral blood mononuclear cells correlated with neutropenia. CONCLUSIONS: Ixabepilone is a good CYP3A4 substrate in vitro; however, in humans, it is likely to be cleared by multiple mechanisms. Furthermore, our results provide evidence that there is a direct relationship between ixabepilone pharmacokinetics, neutrophil counts, and microtubule bundle formation in PBMCs. Strong inhibitors of CYP3A4 should be used cautiously in the context of ixabepilone dosing.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Epotilonas/administração & dosagem , Epotilonas/farmacocinética , Cetoconazol/administração & dosagem , Cetoconazol/farmacologia , Microssomos Hepáticos/metabolismo , Neoplasias/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Biologia Computacional , Inibidores do Citocromo P-450 CYP3A , Epotilonas/efeitos adversos , Epotilonas/farmacologia , Feminino , Neoplasias dos Genitais Femininos/tratamento farmacológico , Neoplasias dos Genitais Femininos/metabolismo , Humanos , Cetoconazol/efeitos adversos , Leucócitos Mononucleares/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Moduladores de Tubulina/administração & dosagem , Moduladores de Tubulina/efeitos adversos , Moduladores de Tubulina/farmacocinética , Moduladores de Tubulina/farmacologia
14.
J Med Chem ; 62(22): 10456-10465, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31724863

RESUMO

The APJ receptor and its endogenous peptidic ligand apelin have been implicated as important modulators of cardiovascular function, and APJ receptor agonists may be beneficial in the treatment of heart failure. In this article, we describe the discovery of a series of biphenyl acid derivatives as potent APJ receptor agonists. Following the identification of initial high-throughput screen lead 2, successive optimization led to the discovery of lead compound 15a. Compound 15a demonstrated comparable in vitro potency to apelin-13, the endogenous peptidic ligand for the APJ receptor. In vivo, compound 15a demonstrated a dose-dependent improvement in the cardiac output in male Sprague Dawley rats with no significant changes in either mean arterial blood pressure or heart rate, consistent with the hemodynamic profile of apelin-13 in an acute pressure volume loop model.


Assuntos
Receptores de Apelina/agonistas , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Receptores de Apelina/química , Receptores de Apelina/metabolismo , Compostos de Bifenilo/química , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Frequência Cardíaca/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Ratos Sprague-Dawley , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
15.
ACS Med Chem Lett ; 10(6): 911-916, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31223447

RESUMO

Lead optimization of the diphenylpyridylethanamine (DPPE) and triphenylethanamine (TPE) series of CETP inhibitors to improve their pharmaceutical profile is described. Polar groups at the N-terminus position in the DPPE series resulted in further improvement in potency and pharmaceutical properties concomitant with retaining the safety, efficacy, and pharmacokinetic (PK) profile. A structure-activity relationship observed in the DPPE series was extended to the corresponding analogs in the more potent TPE series, and further optimization resulted in the identification of 2-amino-N-((R)-1-(3-cyclopropoxy-4-fluorophenyl)-1-(3-fluoro-5-(1,1,2,2-tetrafluoroethoxy)phenyl)-2-phenylethyl)-4,4,4-trifluoro-3-hydroxy-3-(trifluoromethyl)butanamide (13). Compound 13 demonstrated no significant changes in either mean arterial blood pressure or heart rate in telemetry rats, had an excellent PK profile, and demonstrated robust efficacy in human CETP/apo-B-100 dual transgenic mice and in hamsters.

16.
J Pharm Sci ; 107(5): 1352-1360, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29317226

RESUMO

BMS-A is an inhibitor of cholesteryl ester transfer protein and is a highly lipophilic compound (clogP 10.5) with poor aqueous solubility (<0.0001 mg/mL at pH 6.5). The compound exhibits low oral exposure when dosed as cosolvent solution formulations. The purpose of this study was to evaluate lipid-based formulations for enabling high-dose toxicology studies and enhancing toxicology margins of BMS-A in preclinical studies in nonrodent species. The solubility of BMS-A was screened in lipid and cosolvent/surfactant excipients, and prototype formulations were developed. In vitro tests showed that fine/microemulsions were formed after aqueous dilution of lipid formulations, and BMS-A was transferred from oil phase to aqueous phase with enhanced solubility following lipid digestion. When dosed in dogs at 200 mg/kg, a Gelucire-based formulation exhibited more than 10-fold higher exposure compared to the solution formulation and was thus selected for toxicology studies in dogs. For monkeys, an olive oil formulation was developed, and the exposure was about 7-fold higher than that from the solution. In summary, lipid-based drug delivery could be applied in early stages of drug discovery to enhance oral exposure and enable preclinical toxicology studies of highly lipophilic compounds, while facilitating the candidate selection of a molecule which is more specifically designed for bioperformance in a lipid-based drug delivery strategy.


Assuntos
Benzamidas/administração & dosagem , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Emulsões/química , Excipientes/química , Fluorbenzenos/administração & dosagem , Lipídeos/química , Administração Oral , Animais , Benzamidas/efeitos adversos , Benzamidas/farmacocinética , Disponibilidade Biológica , Cães , Composição de Medicamentos , Estabilidade de Medicamentos , Fluorbenzenos/efeitos adversos , Fluorbenzenos/farmacocinética , Macaca fascicularis , Masculino , Camundongos Endogâmicos BALB C , Azeite de Oliva/química , Solubilidade , Triglicerídeos/química , Água/química
17.
JACC Basic Transl Sci ; 3(2): 176-186, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29876530

RESUMO

Apelin agonism causes systemic vasodilatation and increased cardiac contractility in humans, and improves pulmonary arterial hypertension (PAH) in animal models. Here, the authors examined the short-term pulmonary hemodynamic effects of systemic apelin infusion in patients with PAH. In a double-blind randomized crossover study, 19 patients with PAH received intravenous (Pyr1)apelin-13 and matched saline placebo during invasive right heart catheterization. (Pyr1)apelin-13 infusion caused a reduction in pulmonary vascular resistance and increased cardiac output. This effect was accentuated in the subgroup of patients receiving concomitant phosphodiesterase type 5 inhibition. Apelin agonism is a novel potential therapeutic target for PAH. (Effects of Apelin on the Lung Circulation in Pulmonary Hypertension; NCT01457170).

18.
J Med Chem ; 61(3): 681-694, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316397

RESUMO

G protein-coupled receptor 40 (GPR40) has become an attractive target for the treatment of diabetes since it was shown clinically to promote glucose-stimulated insulin secretion. Herein, we report our efforts to develop highly selective and potent GPR40 agonists with a dual mechanism of action, promoting both glucose-dependent insulin and incretin secretion. Employing strategies to increase polarity and the ratio of sp3/sp2 character of the chemotype, we identified BMS-986118 (compound 4), which showed potent and selective GPR40 agonist activity in vitro. In vivo, compound 4 demonstrated insulinotropic efficacy and GLP-1 secretory effects resulting in improved glucose control in acute animal models.


Assuntos
Descoberta de Drogas , Pirazóis/farmacologia , Pirazóis/farmacocinética , Receptores Acoplados a Proteínas G/agonistas , Administração Oral , Animais , Disponibilidade Biológica , Humanos , Masculino , Camundongos , Modelos Moleculares , Conformação Molecular , Pirazóis/administração & dosagem , Pirazóis/química , Pirrolidinas/química
19.
J Med Chem ; 60(4): 1417-1431, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112924

RESUMO

A novel series of pyrrolidine-containing GPR40 agonists is described as a potential treatment for type 2 diabetes. The initial pyrrolidine hit was modified by moving the position of the carboxylic acid, a key pharmacophore for GPR40. Addition of a 4-cis-CF3 to the pyrrolidine improves the human GPR40 binding Ki and agonist efficacy. After further optimization, the discovery of a minor enantiomeric impurity with agonist activity led to the finding that enantiomers (R,R)-68 and (S,S)-68 have differential effects on the radioligand used for the binding assay, with (R,R)-68 potentiating the radioligand and (S,S)-68 displacing the radioligand. Compound (R,R)-68 activates both Gq-coupled intracellular Ca2+ flux and Gs-coupled cAMP accumulation. This signaling bias results in a dual mechanism of action for compound (R,R)-68, demonstrating glucose-dependent insulin and GLP-1 secretion in vitro. In vivo, compound (R,R)-68 significantly lowers plasma glucose levels in mice during an oral glucose challenge, encouraging further development of the series.


Assuntos
Hipoglicemiantes/farmacologia , Pirrolidinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Glicemia/análise , Glicemia/metabolismo , Linhagem Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Pirrolidinas/química , Pirrolidinas/farmacocinética , Pirrolidinas/uso terapêutico , Ratos , Receptores Acoplados a Proteínas G/metabolismo
20.
Anal Chim Acta ; 916: 42-51, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27016437

RESUMO

To quantify a therapeutic PEGylated protein in monkey serum as well as to monitor its potential in vivo instability and methionine oxidation, a novel ultra high performance liquid chromatography-high resolution mass spectrometric (UHPLC-HRMS) assay was developed using a surrogate disulfide-containing peptide, DCP(SS), and a confirmatory peptide, CP, a disulfide-free peptide. DCP(SS) was obtained by eliminating the step of reduction/alkylation before trypsin digestion. It contains an intact disulfide linkage between two peptide sequences that are essential for drug function but susceptible to potential in vivo cleavages. HRMS-based single ion monitoring (SIM) on a Q Exactive™ mass spectrometer was employed to improve assay specificity and sensitivity for DCP(SS) due to its poor fragmentation and low sensitivity with SRM detection. The assay has been validated for the protein drug in monkey serum using both surrogate peptides with excellent accuracy (within ±4.4%Dev) and precision (within 7.5%CV) with a lower limit of quantitation (LLOQ) at 10 ng mL(-1). The protein concentrations in monkey serum obtained from the DCP(SS)-based assay not only provided important pharmacokinetic parameters, but also confirmed in vivo stability of the peptide regions of interest by comparing drug concentrations with those obtained from the CP-based assay or from a ligand-binding assay (LBA). Furthermore, UHPLC-HRMS allowed simultaneous monitoring of the oxidized forms of both surrogate peptides to evaluate potential ex vivo/in vivo oxidation of one methionine present in each of both surrogate peptides. To the best of our knowledge, this is the first report of using a surrogate disulfide-containing peptide for LC-MS bioanalysis of a therapeutic protein.


Assuntos
Proteínas Sanguíneas/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Dissulfetos/química , Polietilenoglicóis/análise , Proteínas/uso terapêutico , Espectrometria de Massas em Tandem/métodos , Animais , Calibragem , Haplorrinos , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA