RESUMO
MXene is widely used in the construction of optoelectronic interfaces due to its excellent properties. However, the hydrophilicity and metastable surface of MXene lead to its oxidation behavior, resulting in the degradation of its various properties, which seriously limits its practical application. In this work, a 2D metal-organic framework (2D MOF) with matching 2D morphology, excellent stability performance, and outstanding optoelectronic performance is grown in situ on the MXene surface through heterojunction engineering to suppress the direct contact between reactive molecules and the inner layer material without affecting the original advantages of MXene. The photoelectric dual gain MXene@MOF heterojunction is confirmed. As a photoelectric material, its properties are highly suitable for the demand of interface sensitization layer materials of surface plasmon resonance (SPR). Therefore, using SPR as a platform for the application of this interface material, the performance of MXene@MOF and its potential mechanism to enhance SPR are analyzed in depth using experiments combined with simulation calculations (FDTD/DFT). Finally, the MXene@MOF/peptides-SPR sensor is constructed for rapid and sensitive detection of the cancer marker exosomes to explore its potential in practical applications. This work offers a forward-looking strategy for the design of interface materials with excellent photoelectric performance.
RESUMO
Noncovalent interactions between small-molecule drugs and protein targets assume a pivotal role in drug design. Moreover, the design of covalent inhibitors, forming covalent bonds with amino acid residues, requires rational reactivity for their covalent warheads, presenting a key challenge as well. Understanding the intricacies of these interactions provides a more comprehensive understanding of molecular binding mechanisms, thereby guiding the rational design of potent inhibitors. In this study, we adopted the fragment-based drug design approach, introducing a novel methodology to extract noncovalent and covalent fragments according to distinct three-dimensional (3D) interaction modes from noncovalent and covalent compound libraries. Additionally, we systematically replaced existing ligands with rational fragment substitutions, based on the spatial orientation of fragments in 3D space. Furthermore, we adopted a molecular generation approach to create innovative covalent inhibitors. This process resulted in the recombination of a noncovalent compound library and several covalent compound libraries, constructed by two commonly encountered covalent amino acids: cysteine and serine. We utilized noncovalent ligands in KLIFS and covalent ligands in CovBinderInPDB as examples to recombine noncovalent and covalent libraries. These recombined compound libraries cover a substantial portion of the chemical space present in the original compound libraries and exhibit superior performance in terms of molecular scaffold diversity compared to the original compound libraries and other 11 commercial libraries. We also recombined BTK-focused libraries, and 23 compounds within our libraries have been validated by former researchers to possess potential biological activity. The establishment of these compound libraries provides valuable resources for virtual screening of covalent and noncovalent drugs targeting similar molecular targets.
Assuntos
Desenho de Fármacos , Ligantes , Imageamento TridimensionalRESUMO
The deep molecular generative model has recently become a research hotspot in pharmacy. This paper analyzes a large number of recent reports and reviews these models. In the central part of this paper, four compound databases and two molecular representation methods are compared. Five model architectures and applications for deep molecular generative models are emphatically introduced. Three evaluation metrics for model evaluation are listed. Finally, the limitations and challenges in this field are discussed to provide a reference and basis for developing and researching new models published in future.
Assuntos
Desenho de Fármacos , Modelos Moleculares , Aprendizado ProfundoRESUMO
Compared to fault diagnosis across operating conditions, the differences in data distribution between devices are more pronounced and better aligned with practical application needs. However, current research on transfer learning inadequately addresses fault diagnosis issues across devices. To better balance the relationship between computational resources and diagnostic accuracy, a knowledge distillation-based lightweight transfer learning framework for rolling bearing diagnosis is proposed in this study. Specifically, a deep teacher-student model based on variable-scale residual networks is constructed to learn domain-invariant features relevant to fault classification within both the source and target domain data. Subsequently, a knowledge distillation framework incorporating a temperature factor is established to transfer fault features learned by the large teacher model in the source domain to the smaller student model, thereby reducing computational and parameter overhead. Finally, a multi-kernel domain adaptation method is employed to capture the feature probability distribution distance of fault characteristics between the source and target domains in Reproducing Kernel Hilbert Space (RKHS), and domain-invariant features are learned by minimizing the distribution distance between them. The effectiveness and applicability of the proposed method in situations of incomplete data across device types were validated through two engineering cases, spanning device models and transitioning from laboratory equipment to real-world operational devices.
RESUMO
Many compartments are prone to pose safety hazards such as loose fasteners or object intrusion due to their confined space, making manual inspection challenging. To address the challenges of complex inspection environments, diverse target categories, and variable scales in confined compartments, this paper proposes a novel GMS-YOLO network, based on the improved YOLOv8 framework. In addition to the lightweight design, this network accurately detects targets by leveraging more precise high-level and low-level feature representations obtained from GhostHGNetv2, which enhances feature-extraction capabilities. To handle the issue of complex environments, the backbone employs GhostHGNetv2 to capture more accurate high-level and low-level feature representations, facilitating better distinction between background and targets. In addition, this network significantly reduces both network parameter size and computational complexity. To address the issue of varying target scales, the first layer of the feature fusion module introduces Multi-Scale Convolutional Attention (MSCA) to capture multi-scale contextual information and guide the feature fusion process. A new lightweight detection head, Shared Convolutional Detection Head (SCDH), is designed to enable the model to achieve higher accuracy while being lighter. To evaluate the performance of this algorithm, a dataset for object detection in this scenario was constructed. The experiment results indicate that compared to the original model, the parameter number of the improved model decreased by 37.8%, the GFLOPs decreased by 27.7%, and the average accuracy increased from 82.7% to 85.0%. This validates the accuracy and applicability of the proposed GMS-YOLO network.
RESUMO
Investigation on a competitive endogenous RNA (ceRNA) network attracted lots of attention due its function in cancer regulation. Here, we probed into the possible molecular mechanism of circSSPO/microRNA-6820-5p (miR-6820-5p)/kallikrein-related peptidase 8 (KLK8)/PKD1 network in the esophageal squamous cell carcinoma (ESCC). Following whole-transcriptome sequencing and differential analysis in collected ESCC tissue samples, circRNA-miRNA-mRNA regulatory network affecting ESCC was investigated. After interaction measurement among circSSPO/miR-6820-5p/KLK8/PKD1, their regulatory roles in ESCC cell functions in vitro and xenograft tumor growth and lung metastasis in vivo were analyzed. The bioinformatics prediction and sequencing results screened that circSSPO, miR-6820-5p, KLK8, and PKD1 were associated with ESCC development. In ESCC, miR-6820-5p was expressed at very low levels, while circSSPO, KLK8, and PKD1 were highly expressed. In vitro cell experiments further proved that circSSPO competitively inhibited miR-6820-5p to induce ESCC cell malignant properties. Moreover, knockdown of KLK8 or PKD1 inhibited ESCC cell malignant properties. circSSPO also promoted the tumorigenic and metastasis of ESCC through the upregulation of KLK8 and PKD1 expression in vivo. We found that circSSPO was an oncogenic circRNA that was significantly abundant in ESCC tissues and circSSPO exhibited an oncogenic activity in ESCC by elevating expression of KLK8 and PKD1 through suppressing miR-6820-5p expression.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , RNA Circular , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Calicreínas/genética , Calicreínas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Regulação para Cima/genéticaRESUMO
Chemoresistance remains a major obstacle to the treatment of esophageal cancer (EC). Exosome-mediated transfer of long noncoding RNAs (lncRNAs) has recently been unveiled to correlate with the regulation of drug resistance in EC. This study aimed to investigate the physiological mechanisms by which exosome-encapsulated lncRNA myocardial infarction-associated transcript (MIAT) derived from tumor cells might mediate the paclitaxel (PTX) resistance of EC cells. First, MIAT was experimentally determined to be upregulated in PTX nonresponders and PTX-resistant EC cells. Silencing of MIAT in PTX-resistant EC cells decreased cell viability and enhanced apoptosis, corresponding to a reduced half-maximal inhibitory concentration (IC50 ) value. Next, exosomes were isolated from EC109 and EC109/T cells, and EC109 cells were cocultured with EC109/T-cell-derived exosomes. Accordingly, MIAT was revealed to be transmitted through exosomes from EC109/T cells to EC109 cells. Tumor-derived exosomes carrying MIAT increased the IC50 value of PTX and suppressed apoptosis in EC109 cells to promote PTX resistance. Furthermore, MIAT promoted the enrichment of TATA-box binding protein-associated Factor 1 (TAF1) in the promoter region of sterol regulatory element binding transcription factor 1 (SREBF1), as shown by a chromatin immunoprecipitation assay. This might be the mechanism by which MIAT could promote PTX resistance. Finally, in vivo experiments further confirmed that the knockdown of MIAT attenuated the resistance of EC cells to PTX. Collectively, these results indicate that tumor-derived exosome-loaded MIAT activates the TAF1/SREBF1 axis to induce PTX resistance in EC cells, providing a potential therapeutic target for overcoming PTX resistance in EC.
Assuntos
Neoplasias Esofágicas , Exossomos , MicroRNAs , Infarto do Miocárdio , RNA Longo não Codificante , Humanos , Paclitaxel/farmacologia , Exossomos/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , RNA Longo não Codificante/genética , MicroRNAs/genética , Proliferação de Células , Proteína de Ligação a Elemento Regulador de Esterol 1RESUMO
One of the main pathological features of Parkinson's disease (PD) is the loss of dopaminergic neurons in the substantia nigra compacta (SNc). Cistanoside A (CA) has a strong neuroprotective effect in PD, but the exact mechanism is unclear. In the present study, the MPTP-stimulated mouse model of PD and MPP+ -treated PD model in the MES23.5 neuronal cell model of PD were used to investigate the neuroprotective effects of CA on PD and its potential mechanism. The in vivo experiment results indicated that CA improved the motor function in mice and increased the number of tyrosine hydroxylase positive cells in SNc. In vitro experiments showed that CA reduced the MPP+ -induced decrease in neurons and mitochondrial membrane potential and promoted the activation of autophagosomes. Furthermore, we found that CA promoted the recruitment of PINK1 and Parkin aggregation to impair mitochondrial membranes and inhibited mitochondrial damage via LC3- and p62-mediated autophagy. In conclusion, CA protects against MPTP-induced neurotoxicity in vivo and MPP+ -induced neurotoxicity in vitro, possibly by promoting the PINK1/Parkin/p62 pathway to accelerate the degradation of damaged mitochondria thereby reducing oxidative stress.
Assuntos
Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Mitofagia , Intoxicação por MPTP/metabolismo , Fármacos Neuroprotetores/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Camundongos Endogâmicos C57BLRESUMO
OBJECTIVES: To construct a prognosis risk model based on long noncoding RNAs (lncRNAs) related to cuproptosis and to evaluate its application in assessing prognosis risk of bladder cancer patients. METHODS: RNA sequence data and clinical data of bladder cancer patients were downloaded from the Cancer Genome Atlas database. The correlation between lncRNAs related to cuproptosis and bladder cancer prognosis was analyzed with Pearson correlation analysis, univariate Cox regression, Lasso regression, and multivariate Cox regression. Then a cuproptosis-related lncRNA prognostic risk scoring equation was constructed. Patients were divided into high-risk and low-risk groups based on the median risk score, and the immune cell abundance between the two groups were compared. The accuracy of the risk scoring equation was evaluated using Kaplan-Meier survival curves, and the application of the risk scoring equation in predicting 1, 3 and 5-year survival rates was evaluated using receiver operating characteristic (ROC) curves. Univariate and multivariate Cox regression were used to screen for prognostic factors related to bladder cancer patients, and a prognostic risk assessment nomogram was constructed, the accuracy of which was evaluated with calibration curves. RESULTS: A prognostic risk scoring equation for bladder cancer patients was constructed based on nine cuproptosis-related lncRNAs. Immune infiltration analysis showed that the abundances of M0 macrophages, M1 macrophages, M2 macrophages, resting mast cells and neutrophils in the high-risk group were significantly higher than those in the low-risk group, while the abundances of CD8+ T cells, helper T cells, regulatory T cells and plasma cells in the low-risk group were significantly higher than those in the high-risk group (all P<0.05). Kaplan-Meier survival curve analysis showed that the total survival and progression-free survival of the low-risk group were longer than those of the high-risk group (both P<0.01). Univariate and multivariate Cox analysis showed that the risk score, age and tumor stage were independent factors for patient prognosis. The ROC curve analysis showed that the area under the curve (AUC) of the risk score in predicting 1, 3 and 5-year survival was 0.716, 0.697 and 0.717, respectively. When combined with age and tumor stage, the AUC for predicting 1-year prognosis increased to 0.725. The prognostic risk assessment nomogram for bladder cancer patients constructed based on patient age, tumor stage, and risk score had a prediction value that was consistent with the actual value. CONCLUSIONS: A bladder cancer patient prognosis risk assessment model based on cuproptosis-related lncRNA has been successfully constructed in this study. The model can predict the prognosis of bladder cancer patients and their immune infiltration status, which may also provide a reference for tumor immunotherapy.
Assuntos
Apoptose , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , Linfócitos T CD8-Positivos , Prognóstico , RNA Longo não Codificante/genética , Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , CobreRESUMO
Objective: To analyze changes in retrobulbar blood flow in patients with pathological myopia using color doppler ultrasound (CDU), and to explore the relationship of these changes with the characteristic changes resulting from myopia. Methods: One hundred and twenty patients who met the selection criteria in the ophthalmology department of He Eye Specialist Hospital from May 2020 to May 2022 were included in this study. Patients with normal vision (n=40) were considered Group-A, patients with low and moderate myopia (n=40) were considered Group-B, and patients with pathological myopia (n=40) were considered Group-C. All three groups underwent ultrasonography. The peak systolic blood flow velocity (PSV), end-diastolic blood flow velocity (EDV), and resistance index (RI) of the ophthalmic artery, central retinal artery, and posterior ciliary artery were recorded and compared, and the characteristics of these parameters and myopia severity were analyzed. Results: Pathological myopia resulted in significantly lower PSV and EDV of the ophthalmic artery, central retinal artery and posterior ciliary artery and higher RI values than patients with normal vision and low/moderate myopia (P<0.05). Pearson correlation analysis showed that retrobulbar blood flow changes were significantly correlated with age, eye axis, best corrected visual acuity, and retinal choroidal atrophy. Conclusion: CDU can objectively evaluate the retrobulbar blood flow changes in pathological myopia, and such blood flow changes are significantly correlated with the characteristic changes of myopia.
RESUMO
BACKGROUND: Risperidone, an atypical antipsychotic, impedes serotonin and dopamine receptor systems. Meanwhile, tumor necrosis factor-α (TNF-α) is known to participate in regulating osteoblast functions. Consequently, the current study aimed to investigate whether the influences of Risperidone on osteoblast functions are associated with TNF-α and special AT-rich sequence-binding protein (SATB2). METHODS: Firstly, we searched the DGIdb, MEM and GeneCards databases to identify the critical factors involved in the effects of Risperidone on osteoblasts, as well as their interactions. Afterwards, osteoblast cell line MC3T3-E1 was transduced with lentivirus carrying si-TNF-α, si-SATB2 or both and subsequently treated with Risperidone. Various abilities including differentiation, autophagy and apoptosis of osteoblasts were examined after different treatments. Finally, animal experiments were performed with Risperidone alone or together with lentivirus to verify the function of Risperidone in vivo and the mechanism. RESULTS: It was found that Risperidone might promote TNF-α expression, thereby inhibiting the expression of SATB2 to affect the autophagy and apoptosis in osteoblasts. Furthermore, as shown by our experimental findings, Risperidone treatment inhibited the differentiation and autophagy, and promoted the apoptosis of osteoblasts, as evidenced by elevated levels of OPG, p62, cleaved PARP1, cleaved caspase-3, cleaved caspase-8, and cleaved caspase-9, and reduced levels of LC3 II/I, Beclin1, collagen I, and RANKL. In addition, Risperidone was also found to elevate the expression of TNF-α to down-regulate SATB2, thereby inhibiting the differentiation and autophagy and enhancing the apoptosis of osteoblasts in vitro and in vivo. CONCLUSIONS: Collectively, our findings indicated that Risperidone affects the differentiation of osteoblasts by inhibiting autophagy and enhancing apoptosis via TNF-α-mediated down-regulation of SATB2.
Assuntos
Antipsicóticos , Risperidona , Animais , Antipsicóticos/metabolismo , Antipsicóticos/farmacologia , Apoptose , Autofagia , Osteoblastos , Risperidona/metabolismo , Risperidona/farmacologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
5-Fluorouracil (5-FU) resistance is one of the main causes for treatment failure in esophageal cancer (EC). Here, we intended to elucidate the mechanism of tumor-derived extracellular vesicles (TEVs)-encapsulated long noncoding RNAs (lncRNAs) AC116025.2 in 5-FU resistance in EC. EVs were isolated from the serum samples of EC patients and HEEC, TE-1, and TE-1/5-FU cells, followed by RT-qPCR detection of AC116025.2 expression in EVs. The relationship among AC116025.2, microRNA (miR)-4496, and SEMA5A was evaluated. Next, EC cells were cocultured with EVs, followed by lentivirus transduction and plasmid transfection for studying the role of TEVs-AC116025.2 in EC cells in relation to miR-4496 and SEMA5A. Tumor formation in nude mice was applied for in vivo confirmation. Elevated AC116025.2 expression was seen in the EVs from the serum of 5-FU insensitive patients and from 5-FU-resistant EC cells. Mechanistically, AC116025.2 bound to miR-4496 that inversely targeted SEMA5A in EC cells. EVs-oe-AC116025.2 augmented EC cell viability, colony formation, and 5-FU resistance, but diminished their apoptosis through miR-4496-mediated SEMA5A. Furthermore, EVs-oe-AC116025.2 augmented tumor formation and 5-FU resistance of EC cells in vivo. Conclusively, our data offered evidence of the promoting mechanism of TEVs in the 5-FU resistance of EC by delivering AC116025.2.
Assuntos
Neoplasias Esofágicas , Vesículas Extracelulares , MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fluoruracila/farmacologia , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular TumoralRESUMO
BACKGROUND: Intrauterine adhesion (IUA) is one of the leading causes of infertility and the main clinical challenge is the high recurrence rate. The key to solving this dilemma lies in elucidating the mechanisms of endometrial fibrosis. The aim of our team is to study the mechanism underlying intrauterine adhesion fibrosis and the origin of fibroblasts in the repair of endometrial fibrosis. METHODS: Our experimental study involving an animal model of intrauterine adhesion and detection of fibrosis-related molecules. The levels of molecular factors related to the endothelial-to-mesenchymal transition (EndMT) were examined in a rat model of intrauterine adhesion using immunofluorescence, immunohistochemistry, qPCR and Western blot analyses. Main outcome measures are levels of the endothelial marker CD31 and the mesenchymal markers alpha-smooth muscle actin (α-SMA) and vimentin. RESULTS: Immunofluorescence co-localization of CD31 and a-SMA showed that 14 days after moulding, double positive cells for CD31 and a-SMA could be clearly observed in the endometrium. Decreased CD31 levels and increased α-SMA and vimentin levels indicate that EndMT is involved in intrauterine adhesion fibrosis. CONCLUSIONS: Endothelial cells promote the emergence of fibroblasts via the EndMT during the endometrial fibrosis of intrauterine adhesions.
Assuntos
Endométrio/patologia , Transição Epitelial-Mesenquimal/fisiologia , Miofibroblastos/patologia , Doenças Uterinas/etiologia , Animais , Modelos Animais de Doenças , Feminino , Fibrose/complicações , Humanos , Ratos , Ratos Sprague-Dawley , Aderências Teciduais/etiologia , Doenças Uterinas/patologiaRESUMO
With the exponential growth of cyber-physical systems (CPSs), security challenges have emerged; attacks on critical infrastructure could result in catastrophic consequences. Intrusion detection is the foundation for CPS security protection, and deep-packet inspection is the primary method for signature-matched mechanisms. This method usually employs regular expression matching (REM) to detect possible threats in the packet payload. State explosion is the critical challenge for REM applications, which originates primarily from features of large character sets with unbounded (closures) or bounded (counting) repetitions. In this work, we propose Offset-FA to handle these repetitions in a uniform mechanism. Offset-FA eliminates state explosion by extracting the repetitions from the nonexplosive string fragments. Then, these fragments are compiled into a fragment-DFA, while a fragment relation table and a reset table are constructed to preserve their connection and offset relationship. To our knowledge, Offset-FA is the first automaton to handle these two kinds of repetitions together with a uniform mechanism. Experiments demonstrate that Offset-FA outperforms state-of-the-art solutions in both space cost and matching speed on the premise of matching correctness, and achieves a comparable matching speed with that of DFA on practical rule sets.
RESUMO
Circular RNA is a newly discovered member of non-coding RNA (ncRNA) and regulates the target gene by acting as a micro-RNA sponge. It plays vital roles in various diseases. However, the functions of circular RNA in non-small cell lung cancer (NSCLC) remain still unclear. Our data showed that circ-WHSC1 was highly expressed in NSCLC cells and tissues. Both in vitro and in vivo experiments showed that circ-WHSC1 promoted NSCLC proliferation. circ-WHSC1 also promoted the migration and invasion of lung cancer cells. Through bioinformatic analysis and functional experiments, we showed that circ-WHSC1 could act as a sponge for micro-RNA-7 (miR-7) and regulate the expression of TAB2 (TGF-beta activated kinase one binding protein two). Inhibition of the circ-WHSC1/miR-7/TAB2 pathway could effectively attenuate lung cancer progression. In summary, this study confirmed the existence and oncogenic function of circ-WHSC1 in NSCLC. The research suggests that the circ-WHSC1/miR-7/TAB2 axis might be a potential target for NSCLC therapy.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Oncogenes , RNA Circular/genética , Proteínas Repressoras/genética , Animais , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Xenoenxertos , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos , Interferência de RNA , Proteínas Repressoras/metabolismoRESUMO
Intrauterine devices containing copper placement will release a large amount of Cu2+ into the uterine fluid, leading to local endometrial damage and inflammation, which is considered to be one of the causes of abnormal uterine bleeding. Studies have shown that the metabolism and function of metal ions are related to the regulation of microRNA. The aims of this study were to investigate changes in endometrial microRNA levels after implantation of an intrauterine device containing copper and to preliminarily explore the signalling pathways involved in abnormal uterine bleeding. The subjects were fertile women, aged 25-35, without major obstetrics and gynaecology diseases. Human endometrial tissues were collected before implantation or removal of the intrauterine device containing copper. High-throughput microRNA sequencing was performed on human endometrial tissues, and real-time quantitative PCR, western blotting and immunohistochemistry were used to detect the expression of relevant genes. MicroRNA sequencing results showed that 72 miRNAs were differentially expressed in the endometrial tissue after the insertion of the intrauterine device containing copper. Implantation of an intrauterine device containing copper implantation can up-regulate the expression of miR-144-3p in endometrial tissue, and therefore, decreases the mRNA and protein expression levels of genes related to endometrial injury and tissue repair, including the MT/NF-κB/MMP damage pathway and the THBS-1/TGF-ß/SMAD3 repair pathway. In this study, the molecular mechanisms of abnormal uterine bleeding due to an intrauterine device containing copper were preliminarily investigated. The information will be beneficial for the clinical treatment of abnormal uterine bleeding caused by intrauterine device.
Assuntos
Cobre/farmacologia , Endométrio/efeitos dos fármacos , Dispositivos Intrauterinos de Cobre , MicroRNAs/genética , Adulto , Estudos de Casos e Controles , Endométrio/metabolismo , Endométrio/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , MicroRNAs/efeitos dos fármacos , Implantação de PróteseRESUMO
We report the demonstration of optical compression of an electron beam and the production of controllable trains of femtosecond, soft x-ray pulses with the Linac Coherent Light Source (LCLS) free-electron laser (FEL). This is achieved by enhanced self-amplified spontaneous emission with a 2 µm laser and a dechirper device. Optical compression was achieved by modulating the energy of an electron beam with the laser and then compressing with a chicane, resulting in high current spikes on the beam which we observe to lase. A dechirper was then used to selectively control the lasing region of the electron beam. Field autocorrelation measurements indicate a train of pulses, and we find that the number of pulses within the train can be controlled (from 1 to 5 pulses) by varying the dechirper position and undulator taper. These results are a step toward attosecond spectroscopy with x-ray FELs as well as future FEL schemes relying on optical compression of an electron beam.
RESUMO
In this study, the ability of cold-induced RNA-binding protein (CIRBP) to regulate the expression of Src-associated during mitosis of 68 kDa (Sam68) and extracellular signal-regulated kinases (ERK) in the mouse testis and mouse primary spermatocytes (GC-2spd cell line) before and after heat stress was examined to explore the molecular mechanism by which CIRBP decreases testicular injury. A mouse testicular hyperthermia model, a mouse primary spermatocyte hyperthermia model and a low CIRBP gene-expression cell model were constructed and their relevant parameters were analysed. The mRNA and protein levels of CIRBP and Sam68 were significantly decreased in the 3-h and 12-h testicular heat-stress groups, extracellular signal-regulated kinase 1/2 (ERK1/2) protein expression was not significantly affected but phospho-ERK1/2 protein levels were significantly decreased. GC-2spd cellular heat-stress results showed that the mRNA and protein concentrations of CIRBP and Sam68 were reduced 48h after heat stress. In the low CIRBP gene-expression cell model, CIRBP protein expression was significantly decreased. Sam68 mRNA expression was significantly decreased only at the maximum transfection concentration of 50nM and Sam68 protein expression was not significantly affected. These findings suggest that CIRBP may regulate the expression of Sam68 at the transcriptional level and the expression of phospho-ERK1/2 protein, both of which protect against heat-stress-induced testicular injury in mice.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Resposta ao Choque Térmico/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Doenças Testiculares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/genética , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Resposta ao Choque Térmico/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas de Ligação a RNA/metabolismo , Espermatócitos/patologia , Espermatócitos/fisiologia , Doenças Testiculares/etiologia , Doenças Testiculares/genética , Doenças Testiculares/metabolismo , Doenças Testiculares/patologia , Testículo/metabolismo , Testículo/patologiaRESUMO
The helical long-period gratings (HLPGs) with resonance at high diffraction order are fabricated in single-mode fiber using a CO2 laser. A series of HLPGs with different pitches are fabricated, and the phase-matching curves of the HLPGs with first and second diffraction orders are presented based on the experimental results. The temperature, surrounding refractive index (SRI), and torsion-sensing characteristics of the HLPGs with different diffraction orders have been investigated experimentally. The maximum torsion sensitivity of resonance at the second diffraction order is about 0.228 nm/(rad/m), which is twice as high as that of the first diffraction order cladding mode. The HLPG offers great potential to perform simultaneous multiparameter measurement due to the resonance dips at different diffraction orders having quite different sensitivities to temperature, SRI, and torsion.
RESUMO
Bovine mastitis is one of the most prevalent and costly diseases, and can be caused by a variety of bacterial pathogens including enterococci. Unfortunately, comprehensive studies about the prevalence and antimicrobial resistance profiles of entercocci are scarcely reported. This study aimed to investigate the occurrence of enterococci associated with bovine clinical mastitis and subclinical mastitis, to assess their antimicrobial resistance profiles, and to detect the distribution of integrons and gene cassette arrays in Liaoning of China. Our results indicated subclinical mastitis occurred in 34.3% of bovine, and 21.4% of bovine were positive for clinical mastitis, meanwhile Enterococcus faecium is the predominant pathogen in both clinical mastitis and subclinical mastitis. More than 50% of the total isolates were resistant to penicillin, ceftiofur, tylosin, lincomycin, and oxytetracycline. Class I integrons was detected in enterococcal isolates from both clinical and subclinical mastitis with 57.1% and 45.3%, respectively. Meanwhile, class II integrons only were observed in enterococcal isolates from subclinical mastitis. Multidrug resistance has become prevalent in enterococci isolated from clinical mastitis and subclinical mastitis in Liaoning, northeast of China. This study revealed that enterococcal isolates had shown resistant to ß-lactam antibiotics including penicillin, and different therapeutic programs should be carried out in Liaoning of China.