Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38048081

RESUMO

Identifying task-relevant structures is important for molecular property prediction. In a graph neural network (GNN), graph pooling can group nodes and hierarchically represent the molecular graph. However, previous pooling methods either drop out node information or lose the connection of the original graph; therefore, it is difficult to identify continuous subtructures. Importantly, they lacked interpretability on molecular graphs. To this end, we proposed a novel Molecular Edge Shrinkage Pooling (MESPool) method, which is based on edges (or chemical bonds). MESPool preserves crucial edges and shrinks others inside the functional groups and is able to search for key structures without breaking the original connection. We compared MESPool with various well-known pooling methods on different benchmarks and showed that MESPool outperforms the previous methods. Furthermore, we explained the rationality of MESPool on some datasets, including a COVID-19 drug dataset.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Redes Neurais de Computação , Benchmarking
2.
Anal Chem ; 96(26): 10851-10859, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38912707

RESUMO

Mitochondrial Membrane Chromatography (MMC) is a bioaffinity chromatography technique developed to study the interaction between target proteins embedded in the mitochondrial membrane and their ligand compounds. However, the MMC stationary phases (MMSP) prepared by chemical immobilization are prone to nonspecific binding in candidate agent screening inevitably. To address these challenges, Twin Strep-Tag/Strep Tactin was employed to establish a specific affinity system in the present study. We prepared a carnitine palmitoyltransferase 1A (CPT1A) MMSP by specifically linking Strep-tactin-modified silica gel with the Twin Strep-Tag on the CPT1A-oriented mitochondrial membrane. This Twin Strep-Tag/Strep Tactin modified CPT1A/MMC method exhibited remarkably better retention behavior, longer stationary phase lifespan, and higher screening specificity compared with previous MMC systems with glutaraldehyde immobilization. We adopted the CPT1A-specific MMC system in screening CPT1A ligands from traditional Chinese medicines, and successfully identified novel candidate ligands: ononin, isoliquiritigenin, and aloe-emodin, from Glycyrrhiza uralensis Fisch and Senna tora (L.) Roxb extracts. Biological assessments illustrated that the compounds screened promote CPT1A enzyme activity without affecting CPT1A protein expression, as well as effectively reduce the lipid droplets and triglyceride levels in the high fat induction HepG2 cells. The results suggest that we have developed an MMC system, which is promising for studying the bioaffinity of mitochondrial membrane proteins to candidate compounds. This system provides a platform for a key step in mitochondrial medicine discovery, especially for bioactive molecule screening from complex herbal extracts.


Assuntos
Carnitina O-Palmitoiltransferase , Metabolismo dos Lipídeos , Membranas Mitocondriais , Humanos , Carnitina O-Palmitoiltransferase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Cromatografia de Afinidade , Ligantes
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731879

RESUMO

Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, SARS-CoV-2 variants capable of breakthrough infections have attracted global attention. These variants have significant mutations in the receptor-binding domain (RBD) of the spike protein and the membrane (M) protein, which may imply an enhanced ability to evade immune responses. In this study, an examination of co-mutations within the spike RBD and their potential correlation with mutations in the M protein was conducted. The EVmutation method was utilized to analyze the distribution of the mutations to elucidate the relationship between the mutations in the spike RBD and the alterations in the M protein. Additionally, the Sequence-to-Sequence Transformer Model (S2STM) was employed to establish mapping between the amino acid sequences of the spike RBD and M proteins, offering a novel and efficient approach for streamlined sequence analysis and the exploration of their interrelationship. Certain mutations in the spike RBD, G339D-S373P-S375F and Q493R-Q498R-Y505, are associated with a heightened propensity for inducing mutations at specific sites within the M protein, especially sites 3 and 19/63. These results shed light on the concept of mutational synergy between the spike RBD and M proteins, illuminating a potential mechanism that could be driving the evolution of SARS-CoV-2.


Assuntos
Proteínas M de Coronavírus , Aprendizado de Máquina , Mutação , Domínios Proteicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Sequência de Aminoácidos , Proteínas M de Coronavírus/genética , COVID-19/virologia , Ligação Proteica , Domínios Proteicos/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química
4.
ACS Appl Mater Interfaces ; 16(10): 13234-13246, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38411590

RESUMO

Carnitine palmitoyltransferase 1A (CPT1A), which resides on the mitochondrial outer membrane, serves as the rate-limiting enzyme of fatty acid ß-oxidation. Identifying the compounds targeting CPT1A warrants a promising candidate for modulating lipid metabolism. In this study, we developed a CPT1A-overexpressed mitochondrial membrane chromatography (MMC) to screen the compounds with affinity for CPT1A. Cells overexpressing CPT1A were cultured, and subsequently, their mitochondrial membrane was isolated and immobilized on amino-silica gel cross-linked by glutaraldehyde. After packing the mitochondrial membrane column, retention components of MMC were performed with LC/MS, whose analytic peaks provided structural information on compounds that might interact with mitochondrial membrane proteins. With the newly developed MMC-LC/MS approach, several Chinese traditional medicine extracts, such as Scutellariae Radix and Polygoni Cuspidati Rhizoma et Radix (PCRR), were analyzed. Five noteworthy compounds, baicalin, baicalein, wogonoside, wogonin, and resveratrol, were identified as enhancers of CPT1A enzyme activity, with resveratrol being a new agonist for CPT1A. The study suggests that MMC serves as a reliable screening system for efficiently identifying modulators targeting CPT1A from complex extracts.


Assuntos
Carnitina O-Palmitoiltransferase , Metabolismo dos Lipídeos , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/metabolismo , Resveratrol , Membranas Mitocondriais , Cromatografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA