Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2013: 540636, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24082854

RESUMO

Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope.


Assuntos
Conservação dos Recursos Naturais/métodos , Solo , China , Ecossistema
2.
ScientificWorldJournal ; 2013: 272363, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844387

RESUMO

Dam breaks of landslide dams are always accompanied by large numbers of casualties, a large loss of property, and negative influences on the downstream ecology and environment. This study uses the Jiadanwan landslide dam, created by the Wenchuan earthquake, as a case study example. Several laboratory experiments are carried out to analyse the dam-break mechanism of the landslide dam. The different factors that impact the dam-break process include upstream flow, the boulder effect, dam size, and channel discharge. The development of the discharge channel and the failure of the landslide dam are monitored by digital video and still cameras. Experimental results show that the upstream inflow and the dam size are the main factors that impact the dam-break process. An excavated discharge channel, especially a trapezoidal discharge channel, has a positive effect on reducing peak flow. The depth of the discharge channel also has a significant impact on the dam-break process. The experimental results are significant for landslide dam management and flood disaster prevention and mitigation.


Assuntos
Materiais de Construção , Terremotos , Deslizamentos de Terra , Modelos Teóricos , Reologia/métodos , Rios , Abastecimento de Água , China , Simulação por Computador
3.
Springerplus ; 5(1): 1621, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27652194

RESUMO

Substrate entrainment can greatly influence the mass movement process of a debris avalanche because it can enlarge the landslide volume and change the motion characteristics of the sliding masses. To study the interaction between debris avalanches and erodible substrate, physical modeling experiments varying in the mass of granular flow and substrate thickness were performed. The experimental results show that both the entrained materials and the maximum erosion depth are increased with increasing mass of the debris avalanche and decreasing substrate thickness. During the experiment, several tests were recorded using a high-speed digital camera with a frequency of 500 frames per second, so that the process of entrainment could be clearly observed. Combined with the experiment result and results of previous studies from predecessors, the entrainment mechanism during debris avalanches are analyzed and discussed. The entrainment effect of the sliding masses on the loose bed materials include basal abrasion and impact erosion of the avalanche front, the latter of which can contribute to the former by failing or yielding the erodible bed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA