Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(27): e2311060, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38287739

RESUMO

Cu-based metal-organic frameworks (MOFs) have attracted much attention for electrocatalytic CO2 reduction to high value-added chemicals, but they still suffer from low selectivity and instability. Here, an associative design strategy for the valence and coordination environment of the metal node in Cu-based MOFs is employed to regulate the CO2 electroreduction to ethylene. A novel "reduction-cleavage-recrystallization" method is developed to modulate the Cu(II)-Trimesic acid (BTC) framework to form a Cu(I)-BTC structure enriched with free carboxyl groups in the secondary coordination environment (SCE). In contrast to Cu(II)-BTC, the Cu(I)-BTC shows higher catalytic activity and better ethylene selectivity (≈2.2-fold) for CO2 electroreduction, which is further enhanced by increasing the content of free carboxyl groups, resulting in ethylene Faraday efficiency of up to 57% and the durability of the catalyst could last for 38 h without performance decline. It indicates that the synergistic effect between Cu(I)-O coordinated structure and free carboxyl groups considerably enhances the dimerization of *CO intermediates and hinders the hydrogenation of *CO intermediates in these competitive pathways. This work unravels the strong dependence of CO2 electroreduction on the Cu valence state and coordination environment in MOFs and provides a platform for designing highly selective electrocatalytic CO2 reduction catalysts.

2.
J Sep Sci ; 45(14): 2603-2611, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35526268

RESUMO

A method for the determination of organic chlorides in hydrogen for fuel cell vehicles by gas chromatography coupled with ion mobility spectrometry was established. Organic chlorides were separated by a non-polar gas chromatography column and detected in the negative ion mode of the ion mobility spectrometer. The effect of operating parameters of ion mobility spectrometer including drift gas flow rate and drift tube temperature on sensitivity and resolution were evaluated. Under the optimized conditions, the detection limits of seven organic chlorides were from 0.65 to 6.73 nmol/mol, which met the requirement of detection for the specification limit of 50 nmol/mol of total halogen impurities in hydrogen for fuel cell vehicles. Compared with gas chromatography-mass spectrometry, and gas chromatography coupled with electron capture detector under the same gas chromatography conditions, gas chromatography coupled with ion mobility spectrometry method demonstrated higher sensitivity for detection of organic chlorides under study. Based on the portability of the device and its detection capabilities, gas chromatography coupled with ion mobility spectrometry has the potential to perform online detection of impurities in hydrogen for fuel cell vehicles.


Assuntos
Hidrogênio , Espectrometria de Mobilidade Iônica , Cloretos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodos , Temperatura
3.
Phys Chem Chem Phys ; 20(17): 11702-11712, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29683160

RESUMO

In this work, a density functional theory (DFT) study was carried out to address the fundamental description of the effective phosphorous species that could improve the framework stability and reduce the coke deposition formation on the P-ZSM-5 zeolite. On the basis of the dealumination barriers of ZSM-5 with all the possible phosphorous species bound on the zeolite framework, PO4H4 was ascertained to be the effective phosphorous species that could improve the ZSM-5 zeolite hydrothermal stability and reduce its acid strength. Apart from this, the olefin polymerization reaction is the main cause of coking deactivation for ZSM-5. Thus, the effect of the modification P-ZSM-5 on the reactivity of light olefins dimerization was also studied. Compared to the unmodified ZSM-5, the activation energy of the rate-limiting step of ethylene dimerization was increased from 20.3 kcal mol-1 to 34.6 kcal mol-1, thereby apparently inhibiting ethylene dimerization and improving the resistance to coke deposition for P-ZSM-5. Our calculation results should provide a beneficial theoretical guide for designing and improving a catalyst for the methanol-to-olefins process and bioethanol dehydration.

4.
J Nanosci Nanotechnol ; 18(8): 5842-5848, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29458651

RESUMO

In this research, hexagonal and cubic mesoporous silica with ordered parallel pore channels was synthesized using odd chain-length N-undecanoyl-L-alanine sodium salt and even chain-length N-lauroyl-L-alanine sodium salt as template respectively. Aminopropylsiloxane was used as the co-structure-directing agents (CSDA). The ordered mesostructure was characterized by infrared spectroscopy, small X-ray diffraction patterns (XRD), scanning electron microscope (SEM), trasmission electron microscope (TEM), and nitrogen sorption analysis. The results indicated that mesoporous silica which was prepared by asymmetric odd chain-length surfactants presented a looser strucuture with large volume than mesoporous silica prepared by the even chain-length surfactant. It led to the transformation from 2D hexagonal (p6mm) phase to cubic (Ia¯3d) mesophase.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(12): 3514-8, 2015 Dec.
Artigo em Zh | MEDLINE | ID: mdl-26964241

RESUMO

Abstract XPS analysis provides qualitative, quantitative and chemical state information for surface elements of solid materials. Therefore, XPS is widely applied in the characterization of refining catalyst. In the present paper, the applications of XPS in the field of typical refining catalysts, including hydrogenation catalyst, S Zorb sorbent and rare-earth modified Y zeolite, are illustrated and exemplified. For sulfided Co (Ni)-Mo (W)/Al2O3(-SiO2) hydrodesulfurization catalysts, the anhydrous oxygen-free transfer process from the reactor to XPS chamber was illustrated. The identification and peak fitting of S(2p) , Mo(3d), W (4f), Co(2p) and Ni(2p) XPS spectra were summarized. The typical chemical states of the active elements were described. Based on these results, the sulfidation extents of the active metals and the cause for the sulfidation inadequency of the catalysts were deduced. As for the application of XPS in S Zorb sorbent, the existence form of zinc was obtained from ZnLMM Auger spectra, and the fracture mechanism and deactivation reason of the sorbent were derived. The distribution of sulfur along the vertical direction was investigated using XPS and argon ion sputtering XPS. Besides, in situ XPS was applied to study the conversion of sulfur- and nickel-containing species for spent sorbent under hydrogen condition. Finally, for cerium modified Y zeolite, the location of cerium ion inside and outside Y zeolite cage was investigated. The results indicate that the liquid phase method is more suitable for the migration of cerium ion toward zeolite as compared with the solid phase method.

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(2): 435-8, 2014 Feb.
Artigo em Zh | MEDLINE | ID: mdl-24822416

RESUMO

Due to the implementation of more stringent specifications in sulfur content for gasoline , a deep understanding of the active phase of Co-Mo/Al2O3 catalysts is necessary to the development of hydrodesulphurization (HDS) catalysts. A series of Co-Mo/Al2O3 HDS catalysts with different metal loading were studied by laser Raman spectra. The existence form and the content of the active component of the catalyst were obtained by Raman spectra. The result shows that the percentage of characteristic Raman bands 940 cm(-1) correlates linearly with the HDS selectivity, which can be used as an experimental evidence for developing industrial selective HDS catalysts. Raman spectra of sulfided catalysts show that the bands of oxidic catalysts at 839 and 940 cm(-1) disappeared, and simultaneously, the bands of Mo-S at 372 and 408 cm(-1) emerged, which indicate that the oxidic sample is sulfided completely.

7.
ISA Trans ; 136: 715-726, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36503616

RESUMO

Generation of multi-quadrotor trajectories in real-time in complex three-dimensional environments remains a grand challenge. Trajectory planning becomes computationally prohibitive as the number of quadrotors and obstacles increases. This paper proposes the distributed receding architecture-based hierarchical trajectory planning method (drHTP) to tackle this issue. The distributed receding architecture is established to formulate and solve a series of single-quadrotor short-horizon planning problems for reducing the computation complexity. In distributed planning, the time-heuristic priority mechanism is devised to assign a reasonable planning sequence to enhance the convergence performance. The hierarchical planning, including front-end initial trajectory generation and back-end trajectory optimization, is introduced for the single-quadrotor in each short horizon to further reduce the computation time. The sparse A* search algorithm is modified to only consider adjacent obstacles for obtaining the initial trajectory rapidly. The convergence of drHTP is analyzed theoretically. Numerical simulations with moving and dense obstacle scenarios are carried out to verify the effectiveness of drHTP. The comparative simulation results demonstrate that drHTP outperforms the state-of-the-art distributed sequential convex programming and distributed model predictive control methods in terms of computational efficiency. drHTP is also validated by the physical experiment in an indoor testbed.

8.
Adv Sci (Weinh) ; 10(17): e2300550, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37097627

RESUMO

Proton exchange membrane fuel cell (PEMFC) is one of the most promising energy conversion devices with high efficiency and zero emission. However, oxygen reduction reaction (ORR) at the cathode is still the dominant limiting factor for the practical development of PEMFC due to its sluggish kinetics and the vulnerability of ORR catalysts under harsh operating conditions. Thus, the development of high-performance ORR catalysts is essential and requires a better understanding of the underlying ORR mechanism and the failure mechanisms of ORR catalysts with in situ characterization techniques. This review starts with the introduction of in situ techniques that have been used in the research of the ORR processes, including the principle of the techniques, the design of the in situ cells, and the application of the techniques. Then the in situ studies of the ORR mechanism as well as the failure mechanisms of ORR catalysts in terms of Pt nanoparticle degradation, Pt oxidation, and poisoning by air contaminants are elaborated. Furthermore, the development of high-performance ORR catalysts with high activity, anti-oxidation ability, and toxic-resistance guided by the aforementioned mechanisms and other in situ studies are outlined. Finally, the prospects and challenges for in situ studies of ORR in the future are proposed.

9.
ISA Trans ; 128(Pt B): 664-676, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34961607

RESUMO

This paper presents an trust-region filtered sequential convex programming (TRF-SCP) to reduce computational burdens of multi-UAV trajectory planning. In TRF-SCP, the trust-region based filter is proposed to remove the inactive collision-avoidance constraints of the convex programming subproblems for decreasing the complexity. The inactive constraints are detected based on the intersection relations between trust regions and collision-avoidance constraints. The trust-region based filter for different types of obstacles are tailored to address complex scenarios. An adaptive trust-region updating mechanism is also developed to mitigate infeasible iteration in TRF-SCP. The sizes of the trust regions are automatically adjusted according to the constraint violation of the optimized trajectory during the SCP iterations. TRF-SCP is then tested on several numerical multi-UAV formation scenarios involving cylindrical, spherical, conical, and polygon obstacles, respectively. Comparative studies demonstrate that TRF-SCP eliminates a large number of collision-avoidance constraints in the entire iterative process and outperforms SCP and Guaranteed Sequential Trajectory Optimization in terms of computational efficiency. The indoor flight experiments are presented to further evaluate the practicability of TRF-SCP.

10.
ACS Appl Mater Interfaces ; 14(6): 7768-7778, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35104117

RESUMO

Renewable power-derived green hydrogen distributed via natural gas networks is considered one of the viable routes to drive the decarbonization of transportation and distributed power generation, while a trace amount of sulfur impurities is one of the key factors that affect the durability and life cycle expense of proton-exchange membrane fuel cells (PEMFCs) for end users. Herein, we explore the underlying effect of sulfur resistance for Pt-based hydrogen oxidation reaction (HOR) electrocatalysts devoted to high-performance and durable PEMFCs. Two typical electrocatalysts, Pt/C with pure Pt nanoparticles (NPs) and PtCo/C with Pt3Co-alloy-core-Pt-skin NPs, were investigated to demonstrate the structure-property relation for Pt-based electrocatalysts. It was revealed that the PtCo/C demonstrated alleviated sulfur poisoning with the adsorption rate constant reduced by 21.7% compared with Pt/C, and the desorption of the adsorbed sulfur was also more favorable with Pt-S bond decomposition temperature lowered by approximately 25 °C. Characterization indicated that sulfur was predominantly adsorbed in the edge mode for PtCo/C, but in a comparable edge and bridge mode for Pt/C, which caused the strengthened Pt-S binding by the chelation effect for Pt/C. The lowered d-band center of surface Pt for PtCo/C, tuned by electron transfer from Co to Pt and Pt lattice strain, was also found responsible for the weakened Pt-S interaction. The recovery test based on electro-oxidation suggested that PtCo/C also outperformed Pt/C with faster and more thorough release of HOR active sites. The SO42- species derived from electro-oxidation of S2- was more apt to adsorb on Pt/C than PtCo/C because of its stronger affinity to SO42- caused by the higher d-band center of Pt. Therefore, it is clarified that adequate modification of the Pt d-band center, for example, negatively tuned for the state-of-the-art Pt/C, is crucial to improve the sulfur resistance and recovery capability for Pt-based electrocatalysts while reserving comparable HOR activity. In particular, the investigated PtCo/C electrocatalyst is a better choice over Pt/C for more durable PEMFC anodes.

11.
RSC Adv ; 12(50): 32374-32382, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36425676

RESUMO

Proton exchange membrane fuel cells (PEMFCs) are regarded as one of the promising new carbon mitigation strategies to realize carbon neutrality. However, efficient and robust electrocatalysts are vital for the commercialization of PEMFCs. Herein, three commercial Pt/C electrocatalysts were investigated including a carbon support and Pt nanoparticles (NPs) to identify their merits and disadvantages, which will help end users quickly select catalysts with excellent performances among the many brands of domestic and foreign catalysts to further better study and better utilize them. Subsequently, they were optimized for real automotive application for about 1800 h, and then the variations in the electrocatalysts on the MEA were analysed by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The mean Pt particle size of the catalysts after operating for 1800 h (cathode, 9.9 ± 3.2 nm) was nearly 4-fold that before use (2.5 ± 0.6 nm), greatly reducing the exposure of metal sites, which was due to the violent three-phase interfacial reaction (ORR) occurring at the cathode side. Also, this assertion was supported by the negative shift in the Pt 4f peaks in the XPS spectra. Moreover, to determine the coalescent evolution of the Pt particles, an in situ TEM experiment was performed. This allowed us to perform fundamental Pt NP degradation studies on the carbon support, which can result in an improvement in the sustainability of catalysis.

12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(7): 1752-7, 2011 Jul.
Artigo em Zh | MEDLINE | ID: mdl-21942017

RESUMO

Improvement of the selectivity of hydrodesulfurization (HDS) for hydrogenation (HYD) of olefins is crucial to produce sulfur-free (S < 0.001%) gasoline from fluid catalytic-cracked (FCC) gasoline. A series of sulfided CoMo/Al2O3 catalysts with different metal loading were prepared by pore-filling impregnation. MoS2 and COMoS active phases on the surface of sulfided COMo/Al2O3 catalyst were identified and analyzed quantitatively by XPS and in-situ FTIR of adsorbed CO. The results reveal that the increase in COMoS phase on the catalyst surface improves the HDS activity and selectivity. And the HDS selectivity correlates linearly with the ratio of active site number of CoMoS and MoS2, the higher the ratio of active site number of CoMoS and MoS2, the better the HDS selectivity. In situ variable temperature FTIR analysis shows that CoMoS phase has stronger electron accepting ability than MoS2. The strong electron deficient property of CoMoS active sites is the main reason for its excellent HDS activity and selectivity.

13.
Se Pu ; 37(4): 432-437, 2019 Apr 08.
Artigo em Zh | MEDLINE | ID: mdl-30977347

RESUMO

A method for the qualitative analysis of compositions of anthraquinone working solution (WS)/hydrogenated working solution (HWS) by gas chromatography-mass spectrometry (GC-MS) was developed. The composition of ethylanthraquinone (eAQ) WS/HWS was identified by GC-MS. Then the samples of amylanthraquinone (AAQ) WS/HWS were analyzed by GC-MS. Combined with the reaction mechanism, the composition of AAQ WS/HWS was inferred. The list of the degradation as well as the intermediate products in the industrial synthesis of H2O2 in anthraquinone WS was generated, and the information obtained regarding the composition of the anthraquinone WS/HWS was helpful in identifying and removing the unacceptable degradation products.

14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(9): 2044-7, 2008 Sep.
Artigo em Zh | MEDLINE | ID: mdl-19093557

RESUMO

Due to the implementation of more stringent specifications in sulfur content for diesel oil, a deep understanding of the active phase of Co-Mo/Al2O3 catalysts is necessary to the development of ultra-deep hydrodesulphurization (HYD) catalysts. A series of reductive Co-Mo/Al2O3 catalysts prepared in the lab and the high-active industrial catalyst (G) were studied by in-situ FTIR using CO as probe molecule. The showed a good relationship with the desulphurization activities of the catalysts. With the increase in MoO3 and CoO loading, the desulphurization activity of catalyst increases, and the infrared spectrum changes with the amount of CO adsorbed on the catalyst. There is a new band at 2179 cm(-1) when the MoO3 loading is up to 20% and CoO up to 4. 16%. According to the activities of the catalysts, the appearance of this new band suggests that the catalyst has higher hydrodesulphurization (HYD) activity. Compared with the infrared spectrum of CO on the catalyst of the same MoO3 and CoO loading by the common preparation method, the catalyst prepared with chelating agents has higher HYD activity and its band at 2 179 cm(-1) is stronger. The infrared spectrum of CO adsorbed on optimum Co-Mo/Al2O3 catalyst prepared in the lab is similar to the highly active industrial catalyst (G). Their bands at 2179 cm(-1) are both very strong and their HYD activities are both higher than the others. Thus, the appearance and the increase of the band at 2179 cm(-1) indicate the increase in the HYD activity of Co-Mo/Al2O3 catalysts to some extent, which could be an effective tool for developing ultra-deep HYD catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA