Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Psychiatry ; 12: 651536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589003

RESUMO

Background: Major depressive disorder (MDD) and general anxiety disorder (GAD) share many common features, leading to numerous challenges in their differential diagnosis. Given the importance of the microbiota-gut-brain axis, we investigated the differences in gut microbiota between representative cases of these two diseases and sought to develop a microbiome-based approach for their differential diagnosis. Methods: We enrolled 23 patients with MDD, 21 with GAD, and 10 healthy subjects (healthy crowd, HC) in the present study. We used 16S rRNA gene-sequencing analysis to determine the microbial compositions of the gut microbiome based on Illumina Miseq and according to the standard protocol. Results: GAD showed a significant difference in microbiota richness and diversity as compared with HC. Additionally, Otu24167, Otu19140, and Otu19751 were significantly decreased in MDD relative to HC, and Otu2581 and Otu10585 were significantly increased in GAD relative to MDD. At the genus level, the abundances of Sutterella and Fusicatenibacter were significantly lower in MDD relative to HC, and the abundances of Fusicatenibacter and Christensenellaceae_R7_group were significantly lower in GAD than in HC. The abundance of Sutterella was significantly higher whereas that of Faecalibacterium was significantly lower in GAD relative to MDD. Moreover, we observed that Christensenellaceae_R7_group negatively correlated with the factor score (Limited to Hopelessness) and total score of HAMD-24 (p < 0.05), whereas Fusicatenibacter negatively correlated with FT4 (p < 0.05). Furthermore, the GAD group showed significant differences at the genus level for Faecalibacterium, which negatively correlated with PTC (p < 0.05). Conclusions: This study elucidated a unique gut-microbiome signature associated with MDD and GAD that could facilitate differential diagnosis and targeted therapy.

2.
Adv Mater ; 31(3): e1805769, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30461090

RESUMO

Concomitance of diverse synaptic plasticity across different timescales produces complex cognitive processes. To achieve comparable cognitive complexity in memristive neuromorphic systems, devices that are capable of emulating short-term (STP) and long-term plasticity (LTP) concomitantly are essential. In existing memristors, however, STP and LTP can only be induced selectively because of the inability to be decoupled using different loci and mechanisms. In this work, the first demonstration of truly concomitant STP and LTP is reported in a three-terminal memristor that uses independent physical phenomena to represent each form of plasticity. The emerging layered material Bi2 O2 Se is used for memristors for the first time, opening up the prospects for ultrathin, high-speed, and low-power neuromorphic devices. The concerted action of STP and LTP allows full-range modulation of the transient synaptic efficacy, from depression to facilitation, by stimulus frequency or intensity, providing a versatile device platform for neuromorphic function implementation. A heuristic recurrent neural circuitry model is developed to simulate the intricate "sleep-wake cycle autoregulation" process, in which the concomitance of STP and LTP is posited as a key factor in enabling this neural homeostasis. This work sheds new light on the development of generic memristor platforms for highly dynamic neuromorphic computing.


Assuntos
Materiais Biomiméticos , Bismuto , Equipamentos e Provisões Elétricas , Compostos de Selênio , Potenciais de Ação , Animais , Desenho de Equipamento , Redes Neurais de Computação , Plasticidade Neuronal , Neurônios/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA