Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 63(12): 1578-1587, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38803051

RESUMO

l-(+)-Tartaric acid plays important roles in various industries, including pharmaceuticals, foods, and chemicals. cis-Epoxysuccinate hydrolases (CESHs) are crucial for converting cis-epoxysuccinate to l-(+)-tartrate in the industrial production process. There is, however, a lack of detailed structural and mechanistic information on CESHs, limiting the discovery and engineering of these industrially relevant enzymes. In this study, we report the crystal structures of RoCESH and KoCESH-l-(+)-tartrate complex. These structures reveal the key amino acids of the active pocket and the catalytic triad residues and elucidate a dynamic catalytic process involving conformational changes of the active site. Leveraging the structural insights, we identified a robust BmCESH (550 ± 20 U·mg-1) with sustained catalytic activity even at a 3 M substrate concentration. After six batches of transformation, immobilized cells with overexpressed BmCESH maintained 69% of their initial activity, affording an overall productivity of 200 g/L/h. These results provide valuable insights into the development of high-efficiency CESHs and the optimization of biotransformation processes for industrial uses.


Assuntos
Biocatálise , Tartaratos , Tartaratos/metabolismo , Tartaratos/química , Domínio Catalítico , Cristalografia por Raios X , Hidrolases/química , Hidrolases/metabolismo , Hidrolases/genética , Modelos Moleculares , Conformação Proteica
2.
Biotechnol Bioeng ; 121(3): 971-979, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38088450

RESUMO

The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is a highly distinguished expression platform for the excellent synthesis of various heterologous proteins in recent years. With the advantages of high-density fermentation, P. pastoris can produce gram amounts of recombinant proteins. While not every protein of interest can be expressed to such high titers, such as Baeyer-Villiger monooxygenase (BVMO) (AcPSMO) which is responsible for pyrazole sulfide asymmetric oxidation. In this work, an excellent yeast expression system was established to facilitate efficient AcPSMO expression, which exhibited 9.5-fold enhanced secretion. Subsequently, an ultrahigh throughput screening method based on fluorescence-activated cell sorting by fusing super folder green fluorescent protein (sfGFP) in the C-terminal of AcPSMO was developed, and directed evolution was performed. The protein expression level of the superior mutant AcPSMOP1 (S58T/T252P/E336N/H456D) reached 84.6 mg/L at 100 mL shaking flask, which was 4.7 times higher than the levels obtained with the wild-type. Finally, the optimized chassis cells were used for high-density fermentation on a 5-L scale, and AcPSMOP1 protein yield of 3.4 g/L was achieved, representing approximately 85% of the total protein secreted. By directly employing the pH-adjusted supernatant as a biocatalyst, 20 g/L pyrmetazole sulfide was completely transformed into the corresponding (S)-sulfoxide, with a 78.8% isolated yield. This work confers dramatic benefits for efficient secretion of other BVMOs in P. pastoris.


Assuntos
Oxigenases de Função Mista , Pichia , Saccharomycetales , Oxigenases de Função Mista/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Sulfóxidos/metabolismo , Sulfetos/metabolismo
3.
Angew Chem Int Ed Engl ; 63(25): e202401235, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38623716

RESUMO

Halide methyltransferases (HMTs) provide an effective way to regenerate S-adenosyl methionine (SAM) from S-adenosyl homocysteine and reactive electrophiles, such as methyl iodide (MeI) and methyl toluene sulfonate (MeOTs). As compared with MeI, the cost-effective unnatural substrate MeOTs can be accessed directly from cheap and abundant alcohols, but shows only limited reactivity in SAM production. In this study, we developed a dynamic cross-correlation network analysis (DCCNA) strategy for quickly identifying hot spots influencing the catalytic efficiency of the enzyme, and applied it to the evolution of HMT from Paraburkholderia xenovorans. Finally, the optimal mutant, M4 (V55T/C125S/L127T/L129P), exhibited remarkable improvement, with a specific activity of 4.08 U/mg towards MeOTs, representing an 82-fold increase as compared to the wild-type (WT) enzyme. Notably, M4 also demonstrated a positive impact on the catalytic ability with other methyl donors. The structural mechanism behind the enhanced enzyme activity was uncovered by molecular dynamics simulations. Our work not only contributes a promising biocatalyst for the regeneration of SAM, but also offers a strategy for efficient enzyme engineering.


Assuntos
Metiltransferases , Metiltransferases/metabolismo , Metiltransferases/química , Engenharia de Proteínas , Simulação de Dinâmica Molecular
4.
Biochemistry ; 62(22): 3214-3221, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37902563

RESUMO

Cytochrome P450 monooxygenases (CYP450s) play an important role in the biosynthesis of natural products by activating inert C-H bonds and inserting hydroxyl groups. However, the activities of most plant-derived CYP450s are extremely low, limiting the heterologous biosynthesis of natural products. Traditional enzyme engineering methods, either rational or screening-based, are not suitable for CYP450s because of the lack of crystal structures and high-throughput screening methods for this class of enzymes. CYP725A4 is the first hydroxylase involved in the biosynthesis pathway of Taxol. Its low activity, promiscuity, and multispecificity make it a bottleneck in Taxol biosynthesis. Here, we identified key amino acids that affect the in vivo activity of CYP725A4 by constructing the ancestral enzymes of CYP725A4. We obtained positive mutants that showed an improved yield of hydroxylated products based on the key amino acids identified, providing guidance for the modification of other CYP450s involved in the biosynthesis of natural products.


Assuntos
Aminoácidos , Produtos Biológicos , Aminoácidos/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Paclitaxel/química , Paclitaxel/metabolismo
5.
J Am Chem Soc ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36661845

RESUMO

The synthesis of structurally diverse amines is of fundamental significance in the pharmaceutical industry due to the ubiquitous presence of amine motifs in biologically active molecules. Biocatalytic reductive amination for amine production has attracted great interest owing to its synthetic advantages. Herein, we report the direct synthesis of a wide range of sterically demanding secondary amines, including several important active pharmaceutical ingredients and pharmaceutical intermediates, via reductive amination of carbonyl substrates and bulky amine nucleophiles employing imine reductases. Key to success for this route is the identification of an imine reductase from Penicillium camemberti with unusual substrate specificity and its further engineering, which empowered the accommodation of a broad range of sterically demanding amine nucleophiles encompassing linear alkyl and (hetero)aromatic (oxy)alkyl substituents and the formation of final amine products with up to >99% conversion. The practical utility of the biocatalytic route has been demonstrated by its application in the preparative synthesis of the anti-hyperparathyroidism drug cinacalcet.

6.
Chembiochem ; 24(20): e202300390, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37455264

RESUMO

Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) constitute major hydrogen donors for oxidative/reductive bio-transformations. NAD(P)H regeneration systems coupled with formate dehydrogenases (FDHs) represent a dreamful method. However, most of the native FDHs are NAD+ -dependent and suffer from insufficient reactivity compared to other enzymatic tools, such as glucose dehydrogenase. An efficient and competitive NADP+ -utilizing FDH necessitates the availability and robustness of NADPH regeneration systems. Herein, we report the engineering of a new FDH from Candida dubliniensis (CdFDH), which showed no strict NAD+ preference by a structure-guided rational/semi-rational design. A combinatorial mutant CdFDH-M4 (D197Q/Y198R/Q199N/A372S/K371T/▵Q375/K167R/H16L/K159R) exhibited 75-fold intensification of catalytic efficiency (kcat /Km ). Moreover, CdFDH-M4 has been successfully employed in diverse asymmetric oxidative/reductive processes with cofactor total turnover numbers (TTNs) ranging from 135 to 986, making it potentially useful for NADPH-required biocatalytic transformations.


Assuntos
Formiato Desidrogenases , NAD , NADP/metabolismo , NAD/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Engenharia de Proteínas/métodos , Oxirredução
7.
Chembiochem ; 24(23): e202300582, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728423

RESUMO

(R)-ß-piperonyl-γ-butyrolactones are key building blocks for the synthesis of podophyllotoxin, which have demonstrated remarkable potential in cancer treatment. Baeyer-Villiger monooxygenases (BVMOs)-mediated asymmetric oxidation is a green approach to produce chiral lactones. While several BVMOs were able to oxidize the corresponding cyclobutanone, most BVMOs gave the (S) enantiomer while Cyclohexanone monooxygenase (CHMO) from Brevibacterium sp. HCU1 gave (R) enantiomer, but with a low enantioselectivity (75 % ee). In this study, we use a strategy called "focused rational iterative site-specific mutagenesis" (FRISM) at residues ranging from 6 Šfrom substrate. The mutations by using a restricted set of rationally chosen amino acids allow the formation of a small mutant library. By generating and screening less than 60 variants, we achieved a high ee of 96.8 %. Coupled with the cofactor regeneration system, 9.3 mM substrate was converted completely in a 100-mL scale reaction. Therefore, our work reveals a promising synthetic method for (R)-ß-piperonyl-γ-butyrolactone with the highest enantioselectivity, and provides a new opportunity for the chem-enzymatic synthesis of podophyllotoxin.


Assuntos
Oxigenases , Podofilotoxina , Oxigenases/metabolismo , Oxigenases de Função Mista/metabolismo , Oxirredução , Especificidade por Substrato
8.
Biotechnol Bioeng ; 120(7): 1773-1783, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37130074

RESUMO

The key precursors for nylon synthesis, that is, 6-aminocaproic acid (6-ACA) and 1,6-hexamethylenediamine (HMD), are produced from petroleum-based feedstocks. A sustainable biocatalytic alternative method from bio-based adipic acid has been demonstrated recently. However, the low efficiency and specificity of carboxylic acid reductases (CARs) used in the process hampers its further application. Herein, we describe a highly accurate protein structure prediction-based virtual screening method for the discovery of new CARs, which relies on near attack conformation frequency and the Rosetta Energy Score. Through virtual screening and functional detection, five new CARs were selected, each with a broad substrate scope and the highest activities toward various di- and ω-aminated carboxylic acids. Compared with the reported CARs, KiCAR was highly specific with regard to adipic acid without detectable activity to 6-ACA, indicating a potential for 6-ACA biosynthesis. In addition, MabCAR3 had a lower Km with regard to 6-ACA than the previously validated CAR MAB4714, resulting in twice conversion in the enzymatic cascade synthesis of HMD. The present work highlights the use of structure-based virtual screening for the rapid discovery of pertinent new biocatalysts.


Assuntos
Ácido Aminocaproico , Oxirredutases , Oxirredutases/metabolismo , Adipatos
9.
Appl Microbiol Biotechnol ; 107(23): 7105-7117, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37736790

RESUMO

Paclitaxel (Taxol®) is the most popular anticancer diterpenoid predominantly present in Taxus. The core skeleton of paclitaxel is highly modified, but researches on the cytochrome P450s involved in post-modification process remain exceedingly limited. Herein, the taxane-10ß-hydroxylase (T10ßH) from Taxus cuspidata, which is the third post-modification enzyme that catalyzes the conversion of taxadiene-5α-yl-acetate (T5OAc) to taxadiene-5α-yl-acetoxy-10ß-ol (T10OH), was investigated in Escherichia coli by combining computation-assisted protein engineering and metabolic engineering. The variant of T10ßH, M3 (I75F/L226K/S345V), exhibited a remarkable 9.5-fold increase in protein expression, accompanied by respective 1.3-fold and 2.1-fold improvements in turnover frequency (TOF) and total turnover number (TTN). Upon integration into the engineered strain, the variant M3 resulted in a substantial enhancement in T10OH production from 0.97 to 2.23 mg/L. Ultimately, the titer of T10OH reached 3.89 mg/L by fed-batch culture in a 5-L bioreactor, representing the highest level reported so far for the microbial de novo synthesis of this key paclitaxel intermediate. This study can serve as a valuable reference for further investigation of other P450s associated with the artificial biosynthesis of paclitaxel and other terpenoids. KEY POINTS: • The T10ßH from T. cuspidata was expressed and engineered in E. coli unprecedentedly. • The expression and activity of T10ßH were improved through protein engineering. • De novo biosynthesis of T10OH was achieved in E. coli with a titer of 3.89 mg/L.


Assuntos
Paclitaxel , Taxus , Escherichia coli/genética , Escherichia coli/metabolismo , Taxoides/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Taxus/genética
10.
Angew Chem Int Ed Engl ; 62(52): e202315659, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37962519

RESUMO

The diterpene synthase AlTS was identified from Aspergillus luchuensis. AlTS catalyses the formation of the diterpene hydrocarbon spiroluchuene A, which exhibits a novel skeleton characterised by a spirocyclic ring system. The cyclisation mechanism towards this compound was elucidated through isotopic labelling experiments in conjunction with DFT calculations and metadynamic simulations. The biosynthetic intermediate luchudiene, besides the derivative spiroluchuene B, was captured from an enzyme variant obtained through site-directed mutagenesis. With its 10-membered ring luchudiene is structurally related to germacrenes and can undergo a Cope rearrangement to luchuelemene.


Assuntos
Diterpenos , Aspergillus/genética , Ciclização
11.
Chembiochem ; 23(16): e202200228, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35639013

RESUMO

Baeyer-Villiger monooxygenases (BVMOs) are important biocatalysts for the enzymatic synthesis of chiral sulfoxides, including chiral sulfoxide-type proton pump inhibitors for the treatment of gastrointestinal diseases. However, native BVMOs are not yet suitable for practical application due to their unsatisfactory activity and thermostability. Although protein engineering approaches can help address these issues, few feasible high-throughput methods are available for the engineering of such enzymes. Herein, a colorimetric detection method to distinguish sulfoxides from sulfides and sulfones was developed for prazole sulfide monooxygenases. Directed evolution enabled by this method has identified a prazole sulfide monooxygenase CbBVMO variant with improved activity and thermostability that catalyzes the asymmetric oxidation of lansoprazole sulfide. A 71.3 % increase in conversion and 6 °C enhancement in the melting point were achieved compared with the wild-type enzyme. This new method is feasible for high-throughput screening of prazole sulfide monooxygenase variants with improved activity, thermostability, and/or substrate specificity.


Assuntos
Ensaios de Triagem em Larga Escala , Oxigenases de Função Mista , Biocatálise , Colorimetria , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxirredução , Especificidade por Substrato , Sulfetos/metabolismo , Sulfóxidos/metabolismo
12.
Chembiochem ; 23(9): e202200063, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257464

RESUMO

The P450-mediated terminal hydroxylation of non-activated C-H bonds is a chemically challenging reaction. CYP153A7 monooxygenase, discovered in Sphingomonas sp. HXN200, belongs to the CYP153A subfamily and shows a pronounced terminal selectivity. Herein, we report the significantly improved terminal hydroxylation activity of CYP153A7 by redesign of the substrate binding pocket based on molecular docking of CYP153A7-C8:0 and sequence alignments. Some of the resultant single mutants were advantageous over the wild-type enzyme with higher reaction rates, achieving a complete conversion of n-octanoic acid (C8:0, 1 mM) in a shorter time period. Especially, a single-mutation variant, D258E, showed 3.8-fold higher catalytic efficiency than the wild type toward the terminal hydroxylation of medium-chain fatty acid C8:0 to the high value-added product 8-hydroxyoctanoic acid.


Assuntos
Sistema Enzimático do Citocromo P-450 , Ácidos Graxos , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/química , Hidroxilação , Simulação de Acoplamento Molecular , Especificidade por Substrato
13.
Appl Environ Microbiol ; 88(9): e0034122, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35442081

RESUMO

Isopropanol dehydrogenase (IPADH) is one of the most attractive options for nicotinamide cofactor regeneration due to its low cost and simple downstream processing. However, poor thermostability and strict cofactor dependency hinder its practical application for bioconversions. In this study, we simultaneously improved the thermostability (433-fold) and catalytic activity (3.3-fold) of IPADH from Brucella suis via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H) by 1.23 × 106-fold. When these variants were employed in three typical bioredox reactions to drive the synthesis of important chiral pharmaceutical building blocks, they outperformed the commonly used cofactor regeneration systems (glucose dehydrogenase [GDH], formate dehydrogenase [FDH], and lactate dehydrogenase [LDH]) with respect to efficiency of cofactor regeneration. Overall, our study provides two promising IPADH variants with complementary cofactor specificities that have great potential for wide applications. IMPORTANCE Oxidoreductases represent one group of the most important biocatalysts for synthesis of various chiral synthons. However, their practical application was hindered by the expensive nicotinamide cofactors used. Isopropanol dehydrogenase (IPADH) is one of the most attractive biocatalysts for nicotinamide cofactor regeneration. However, poor thermostability and strict cofactor dependency hinder its practical application. In this work, the thermostability and catalytic activity of an IPADH were simultaneously improved via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H). The resultant variants show great potential for regeneration of nicotinamide cofactors, and the engineering strategy might serve as a useful approach for future engineering of other oxidoreductases.


Assuntos
NAD , Niacinamida , 2-Propanol , Formiato Desidrogenases/genética , NADP , Regeneração
14.
Biochem Biophys Res Commun ; 537: 64-70, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33387884

RESUMO

Oleate hydratase catalyzes the hydration of unsaturated fatty acids, giving access to C10-functionalization of oleic acid. The resultant 10-hydroxystearic acid is a key material for the synthesis of many biomass-derived value-added products. Herein, we report the engineering of an oleate hydratase from Paracoccus aminophilus (PaOH) with significantly improved catalytic efficiency (from 33 s-1 mM-1 to 119 s-1 mM-1), as well as 3.4 times increased half-life at 30 °C. The structural mechanism regarding the impact of mutations on the improved catalytic activity and thermostability was elucidated with the aid of molecular dynamics simulation. The practical feasibility of the engineered PaOH variant F233L/F122L/T15 N was demonstrated through the pilot synthesis of 10-hydroxystearic acid and 10-oxostearic acid via an optimized multi-enzymatic cascade reaction, with space-time yields of 540 g L-1 day-1 and 160 g L-1 day-1, respectively.


Assuntos
Carbono/metabolismo , Engenharia Genética , Hidroliases/metabolismo , Ácido Oleico/metabolismo , Biocatálise , Ensaios de Triagem em Larga Escala , Cinética , Simulação de Dinâmica Molecular , Mutagênese/genética , Paracoccus/enzimologia , Ácidos Esteáricos/metabolismo
15.
Chembiochem ; 22(7): 1190-1195, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33205522

RESUMO

Baeyer-Villiger monooxygenases (BVMOs) are remarkable biocatalysts for the Baeyer-Villiger oxidation of ketones to generate esters or lactones. The regioselectivity of BVMOs is essential for determining the ratio of the two regioisomeric products ("normal" and "abnormal") when catalyzing asymmetric ketone substrates. Starting from a known normal-preferring BVMO sequence from Pseudomonas putida KT2440 (PpBVMO), a novel BVMO from Gordonia sihwensis (GsBVMO) with higher normal regioselectivity (up to 97/3) was identified. Furthermore, protein engineering increased the specificity constant (kcat /KM ) 8.9-fold to 484 s-1 mM-1 for 10-ketostearic acid derived from oleic acid. Consequently, by using the variant GsBVMOC308L as an efficient biocatalyst, 10-ketostearic acid was efficiently transformed into 9-(nonanoyloxy)nonanoic acid, with a space-time yield of 60.5 g L-1 d-1 . This study showed that the mutant with higher regioselectivity and catalytic efficiency could be applied to prepare medium-chain ω-hydroxy fatty acids through biotransformation of long-chain aliphatic keto acids derived from renewable plant oils.


Assuntos
Oxigenases de Função Mista/metabolismo , Engenharia de Proteínas , Actinobacteria/enzimologia , Biocatálise , Oxigenases de Função Mista/genética , Mutagênese Sítio-Dirigida , Ácido Oleico/química , Ácido Oleico/metabolismo , Oxirredução , Pseudomonas putida/enzimologia , Ácidos Esteáricos/química , Ácidos Esteáricos/metabolismo , Estereoisomerismo , Especificidade por Substrato
16.
Chembiochem ; 22(6): 996-1000, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33146944

RESUMO

Chiral cyanohydrins are useful intermediates in the pharmaceutical and agricultural industries. In nature, hydroxynitrile lyases (HNLs) are a kind of elegant tool for enantioselective hydrocyanation of carbonyl compounds. However, currently available methods for demonstrating hydrocyanation are still stalled at precise, but low-throughput, GC or HPLC analyses. Herein, we report a chromogenic high-throughput screening (HTS) method that is feasible for the cyanohydrin synthesis reaction. This method was highly anti-interference and sensitive, and could be used to directly profile the substrate scope of HNLs either in cell-free extract or fermentation clear broth. This HTS method was also validated by generating new variants of PcHNL5 that presented higher catalytic efficiency and stronger acidic tolerance in variant libraries.


Assuntos
Aldeído Liases/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Nitrilas/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Biocatálise , Evolução Molecular Direcionada , Escherichia coli/enzimologia , Nitrilas/química , Estereoisomerismo , Especificidade por Substrato
17.
Biotechnol Bioeng ; 118(2): 737-744, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33073356

RESUMO

AcCHMO, a cyclohexanone monooxygenase from Acinetobacter calcoaceticus, is a typical Type I Baeyer-Villiger monooxygenase (BVMO). We previously obtained the AcCHMOM6 mutant, which oxidizes omeprazole sulfide (OPS) to the chiral sulfoxide drug esomeprazole. To further improve the catalytic efficiency of the AcCHMOM6 mutant, a focused mutagenesis strategy was adopted at the intersections of the FAD-binding domain, NADPH-binding domain, and α-helical domain based on structural characteristics of AcCHMO. By using focused mutagenesis and subsequent global evolution two key residues (L55 and P497) at the intersections of the domains were identified. Mutant of L55Y improved catalytic efficiency significantly, whereas the P497S mutant alleviated substrate inhibition remarkably. AcCHMOM7 (L55Y/P497S) was obtained by combining the two mutations, which increased the specific activity from 18.5 (M6) to 108 U/g, and an increase in the Ki of the substrate OPS from 34 to 265 µM. The results indicate that catalytic performance can be elevated by modification of the sensitive sites at the intersection of the domains of AcCHMO. The results also provided some insights for the engineering of other Type I BVMOs or other multidomain proteins.


Assuntos
Acinetobacter calcoaceticus/enzimologia , Proteínas de Bactérias/química , Oxigenases de Função Mista/química , Acinetobacter calcoaceticus/genética , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Oxigenases de Função Mista/genética , Mutação de Sentido Incorreto , Domínios Proteicos
18.
Chembiochem ; 21(9): 1341-1346, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-31828918

RESUMO

In this work, we have identified a significantly improved variant (S131Y/Q252I) of the natural ϵ-keto ester reductase CpAR2 from Candida parapsilosis for efficiently manufacturing (R)-8-chloro-6-hydroxyoctanoic acid [(R)-ECHO] through co-evolution of activity and thermostability. The activity of the variant CpAR2S131Y/Q252I towards the ϵ-keto ester ethyl 8-chloro-6-oxooctanoate was improved to 214 U mg-1 -from 120 U mg-1 in the case of the wild-type enzyme (CpAR2WT )-and the half-deactivating temperature (T50 , for 15 min incubation) was simultaneously increased by 2.3 °C in relation to that of CpAR2WT . Consequently, only 2 g L-1 of lyophilized E. coli cells harboring CpAR2S131Y/Q252I and a glucose dehydrogenase (GDH) were required in order to achieve productivity similar to that obtained in our previous work, under optimized reaction conditions (530 g L-1 d-1 ). This result demonstrated a more economical and efficient process for the production of the key (R)-α-lipoic acid intermediate ethyl 8-chloro-6-oxooctanoate.


Assuntos
Aldo-Ceto Redutases/metabolismo , Candida parapsilosis/enzimologia , Mutação , Ácido Tióctico/biossíntese , Aldo-Ceto Redutases/química , Aldo-Ceto Redutases/genética , Conformação Proteica , Engenharia de Proteínas , Estereoisomerismo , Temperatura
19.
Chembiochem ; 21(18): 2680-2688, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32324965

RESUMO

Glucose dehydrogenase (GDH) is a general tool for driving nicotinamide (NAD(P)H) regeneration in synthetic biochemistry. An increasing number of synthetic bioreactions are carried out in media containing high amounts of organic cosolvents or hydrophobic substrates/products, which often denature native enzymes, including those for cofactor regeneration. In this work, we attempted to improve the chemical stability of Bacillus megaterium GDH (BmGDHM0 ) in the presence of large amounts of 1-phenylethanol by directed evolution. Among the resulting mutants, BmGDHM6 (Q252L/E170K/S100P/K166R/V72I/K137R) exhibited a 9.2-fold increase in tolerance against 10 % (v/v) 1-phenylethanol. Moreover, BmGDHM6 was also more stable than BmGDHM0 when exposed to hydrophobic and enzyme-inactivating compounds such as acetophenone, ethyl 2-oxo-4-phenylbutyrate, and ethyl (R)-2-hydroxy-4-phenylbutyrate. Coupled with a Candida glabrata carbonyl reductase, BmGDHM6 was successfully used for the asymmetric reduction of deactivating ethyl 2-oxo-4-phenylbutyrate with total turnover number of 1800 for the nicotinamide cofactor, thus making it attractive for commercial application. Overall, the evolution of chemically robust GDH facilitates its wider use as a general tool for NAD(P)H regeneration in biocatalysis.


Assuntos
Glucose 1-Desidrogenase/metabolismo , Niacinamida/metabolismo , Bacillus megaterium/enzimologia , Álcoois Benzílicos/química , Álcoois Benzílicos/metabolismo , Glucose 1-Desidrogenase/química , Glucose 1-Desidrogenase/genética , Estrutura Molecular , Mutação , Niacinamida/química , Oxirredução , Fenilbutiratos/química , Fenilbutiratos/metabolismo
20.
Biotechnol Lett ; 42(8): 1501-1511, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32219689

RESUMO

OBJECTIVES: To screening of bacteria with cyclic amino alcohol deamination activity for enantioselective synthesis of chiral cyclic ß-amino alcohols. RESULTS: A new strain named Arthrobacter sp. TYUT010-15 with the (R)-selective deamination activity of cyclic ß-amino alcohol has been isolated from nature via a high throughput solid-phase screening method. The reaction conditions of TYUT010-15 were optimized. Using the resting cell of TYUT010-15 as the catalyst, kinetic resolution of trans-2-aminocyclopentanol, trans-2-aminocyclohexanol and cis-1-amino-2-indanol was carried out to afford (1S, 2S)-trans-2-aminocyclopentanol, (1S, 2S)-trans-2-aminocyclohexanol and (1R, 2S)-cis-1-amino-2-indanol in > 99% ee and 49.6-50% conversion. Four aromatic ß-amino alcohols and two amines were also resolved, (S)-ß-amino alcohols and (R)-amines were obtained in > 99% ee. Preparation experiment was conducted with 200 mM (23.2 g L-1) racemic trans-2-aminocyclohexanol, yielding the desired (1S, 2S)-trans-2-aminocyclohexanol in 40% isolated yield, > 99% ee and 5.8 g L-1 d-1 space time yields. CONCLUSIONS: This study provides a high throughput solid-phase method for screening of bacteria with cyclic amino alcohol deamination activity and a first example for practical preparation of chiral cyclic ß-amino alcohol by Arthrobacter sp. TYUT010-15.


Assuntos
Amino Álcoois , Bactérias/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Aminas/análise , Aminas/química , Aminas/metabolismo , Amino Álcoois/análise , Amino Álcoois/química , Amino Álcoois/metabolismo , Arthrobacter/genética , Arthrobacter/metabolismo , Bactérias/genética , Colorimetria , Desaminação , Cinética , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA