Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Environ Sci Technol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048519

RESUMO

For electrochemical application in seawater or brine, continuous scaling on cathodes will form insulation layers, making it nearly impossible to run an electrochemical reaction continuously. Herein, we report our discovery that a cathode consisting of conical nanobundle arrays with hydrophobic surfaces exhibits a unique scaling-free function. The hydrophobic surfaces will be covered with microbubbles created by electrolytic water splitting, which limits scale crystals from standing only on nanotips of conical nanobundles, and the bursting of large bubbles formed by the accumulation of microbubbles will cause a violent disturbance, removing scale crystals automatically from nanotips. Benefiting from the scaling-free properties of the cathode, high-purity nano-CaCO3 (98.9%) and nano-Mg(OH)2 (99.5%) were extracted from seawater. This novel scaling-free cathode is expected to eliminate the inherent limitations of electrochemical technology and open up a new route to seawater mining.

2.
Phys Chem Chem Phys ; 24(12): 7323-7330, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35262113

RESUMO

With an urgent demand for low-energy-consumption and wearable devices, it is desirable to find an easy, effective, and low-cost method to fabricate self-powered flexible photodetectors with simple configurations and high-performance. Self-powered photodetectors are normally fabricated based on either two different materials or the same material in contact with two different metal electrodes. Here, a flexible MoS2 photodetector with the same Au electrodes was fabricated on a polyethylene terephthalate (PET) substrate which exhibits self-powered properties. To our knowledge, its configuration is the simplest, and the fabrication process is easy to implement. At a bias of 0 V, the photodetector exhibits a high responsivity of 431 mA W-1, a short response/recovery time of 40 ms/40 ms, and excellent flexibility. Compared with those at a bias of 2 V, a dark current is sufficiently suppressed, and the response/recovery speed is significantly improved. It is found that the driving force of the self-powered photodetector is provided by the asymmetric Schottky barriers originating from the spontaneous generation of two van der Waals gaps with different widths. The asymmetric barriers exist stably at the interfaces between the 2D material and Au electrodes as further observed for ReS2 or GaSe flakes, which show the generality of asymmetric Schottky barriers between the 2D material and Au electrodes. The discovery here thus gives a new way to generate asymmetric Schottky barriers and develop high-performance self-powered photodetectors.

3.
BMC Plant Biol ; 16(1): 116, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27215938

RESUMO

BACKGROUND: Drought stress is one of the major causes of crop loss. WRKY transcription factors, as one of the largest transcription factor families, play important roles in regulation of many plant processes, including drought stress response. However, far less information is available on drought-responsive WRKY genes in wheat (Triticum aestivum L.), one of the three staple food crops. RESULTS: Forty eight putative drought-induced WRKY genes were identified from a comparison between de novo transcriptome sequencing data of wheat without or with drought treatment. TaWRKY1 and TaWRKY33 from WRKY Groups III and II, respectively, were selected for further investigation. Subcellular localization assays revealed that TaWRKY1 and TaWRKY33 were localized in the nuclei in wheat mesophyll protoplasts. Various abiotic stress-related cis-acting elements were observed in the promoters of TaWRKY1 and TaWRKY33. Quantitative real-time PCR (qRT-PCR) analysis showed that TaWRKY1 was slightly up-regulated by high-temperature and abscisic acid (ABA), and down-regulated by low-temperature. TaWRKY33 was involved in high responses to high-temperature, low-temperature, ABA and jasmonic acid methylester (MeJA). Overexpression of TaWRKY1 and TaWRKY33 activated several stress-related downstream genes, increased germination rates, and promoted root growth in Arabidopsis under various stresses. TaWRKY33 transgenic Arabidopsis lines showed lower rates of water loss than TaWRKY1 transgenic Arabidopsis lines and wild type plants during dehydration. Most importantly, TaWRKY33 transgenic lines exhibited enhanced tolerance to heat stress. CONCLUSIONS: The functional roles highlight the importance of WRKYs in stress response.


Assuntos
Arabidopsis/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Plantas Geneticamente Modificadas/fisiologia , Fatores de Transcrição , Triticum/genética , Adaptação Fisiológica/genética , Arabidopsis/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
ACS Appl Mater Interfaces ; 16(22): 28853-28860, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781477

RESUMO

Perovskite quantum dots (PeQDs) have great application prospects in fields such as displays and solar cells due to their adjustable band gap, high absorption coefficient, high carrier mobility, and solution processability. However, the ionic crystal characteristic of PeQDs and their surface ligands have led to problems such as solvent sensitivity, poor crystal stability, and difficulty in adjusting the photoelectric properties, which are challenges in high-quality PeQDs. Here, to solve the problem of fluorescence degradation caused by phase change and loss of surface ligands during the purification process of CsPbI3 QDs, this work develops a purification strategy that finely regulates the polarity of the purification solvent, to obtain high-purity perovskite. This strategy can tune the surface ligand concentration and optoelectronic properties while maintaining the crystal stability. The optimized purification process enables the quantum dots to maintain the same level of luminescence performance as the original solution (PLQY is ∼90%). Meanwhile, the electrical properties are improved to significantly increase the exciton recombination rate under an electrical drive. Finally, a highly efficient QLED with an external quantum efficiency of exceeding 23% can be achieved. This scheme for fine purification of CsPbI3 QDs will provide some inspiration for the development of efficient PeQDs and the realization of high-performance optoelectronic devices.

5.
J Hazard Mater ; 467: 133680, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325094

RESUMO

Biodegradable mulches are widely recognized as ecologically friendly substances. However, their degradation percentage upon entering soils may vary based on mulch type and soil microbial activities, raising concerns about potential increases in microplastics (MPs). The effects of using different types of mulch on soil carbon pools and its potential to accelerate their depletion have not yet well understood. Therefore, we conducted an 18-month experiment to investigate mulch biodegradation and its effects on CO2 emissions. The experiment included burying soil with biodegradable mulch made of polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT), and control treatments with traditional mulch (PE) and no mulch (CK). The results indicated that PE did not degrade, and the degradation percentage of PLA and PBAT were 46.2% and 88.1%, and the MPs produced by the degradation were 6.7 × 104 and 37.2 × 104 items/m2, respectively. Biodegradable mulch, particularly PLA, can enhance soil microbial diversity and foster more intricate bacterial communities compared to PE. The CO2 emissions were 0.58, 0.74, 0.99, and 0.86 g C/kg in CK, PE, PLA, , PBAT, respectively. A positive correlation was observed between microbial abundance and diversity with CO2 emissions, while a negative correlation was observed with soil total organic carbon. Biodegradable mulch enhanced the transformation of soil organic C into CO2 by stimulating microbial activity.


Assuntos
Adipatos , Dióxido de Carbono , Microplásticos , Microplásticos/toxicidade , Plásticos , Carbono , Poliésteres , Solo
6.
Food Chem X ; 21: 101047, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38187940

RESUMO

To study the effect of storage (for 0, 3, 6, and 12 months) on the flavor of green tea (GT), we monitored the volatile organic compounds (VOCs) in GT through gas chromatography (GC) combined with ion mobility spectrometry and headspace solid-phase micro extraction, GC-MS (mass spectrometry). Then, relative odor activity value (ROAV) was applied to analyze the aroma contribution of the VOCs. During storage, the polyphenol and caffeine contents gradually decreased from 22.38 % to 18.51 % and from 4.37 % to 3.74 %, respectively, and the total soluble sugar first increased and then decreased (from 4.89 % to 7.16 % and then 5.02 %). Although the total free amino acid contents showed a fluctuating trend, the content of cysteamine increased gradually. The contents of VOCs with positive contribution to GT aroma, including linalool, geraniol, nonanal, and 6-methyl-5-hepten-2-one, decreased. They also contributed less in the ROAV after storage. The ROAVs of nonanal, linalool, and geraniol decreased from 3.37 to 0.79, from 100 to 38.21, and from 2.98 to 1.8, respectively, after 12 months of storage. Principal component analysis can be used to identify the samples with different storage durations based on these data. Given the increase in amount of cysteamine and decrease in that of linalool oxide, oxidation may be not the only factor responsible for tea quality in storage.

7.
J Agric Food Chem ; 71(23): 9110-9119, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37256970

RESUMO

Given that roasting changes the structure and allergenicity of peanut allergens, the structural information of peanut allergens must be expounded to explain the alteration in their allergenicity. This work focused on allergen aggregations (AAs) in roasted peanuts. IgE recognition capability was assessed via western blot analysis. The disulfide bond (DB) rearrangement and chemical modification in AAs were identified by combining mass spectroscopy and software tools, and structural changes induced by cross-links were displayed by molecular dynamics and PyMOL software. Results showed that AAs were strongly recognized by IgE and cross-linked mainly by DBs. The types of DB rearrangement in AAs included interprotein (98 peptide pairs), intraprotein (22 peptide pairs), and loop-linked (6 peptides) DBs. Among allergens, Ara h 2 and Ara h 6 presented the most cysteine residues to cross-linkf with others or themselves. DB rearrangement involved IgE epitopes and induced structural changes. Ara h 1 and Ara h 3 were predominantly chemically modified. Moreover, chemical modification altered the local structures of proteins, which may change the allergenic potential of allergens.


Assuntos
Arachis , Hipersensibilidade a Amendoim , Arachis/química , Alérgenos/química , Proteínas de Plantas/química , Antígenos de Plantas/química , Imunoglobulina E/metabolismo , Dissulfetos , Albuminas 2S de Plantas
8.
Biomed Pharmacother ; 162: 114643, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031496

RESUMO

Multi-drug resistance (MDR) in cancer cells, either intrinsic or acquired through various mechanisms, significantly hinders the therapeutic efficacy of drugs. Typically, the reduced therapeutic performance of various drugs is predominantly due to the inherent over expression of ATP-binding cassette (ABC) transporter proteins on the cell membrane, resulting in the deprived uptake of drugs, augmenting drug detoxification, and DNA repair. In addition to various physiological abnormalities and extensive blood flow, MDR cancer phenotypes exhibit improved apoptotic threshold and drug efflux efficiency. These severe consequences have substantially directed researchers in the fabrication of various advanced therapeutic strategies, such as co-delivery of drugs along with various generations of MDR inhibitors, augmented dosage regimens and frequency of administration, as well as combinatorial treatment options, among others. In this review, we emphasize different reasons and mechanisms responsible for MDR in cancer, including but not limited to the known drug efflux mechanisms mediated by permeability glycoprotein (P-gp) and other pumps, reduced drug uptake, altered DNA repair, and drug targets, among others. Further, an emphasis on specific cancers that share pathogenesis in executing MDR and effluxed drugs in common is provided. Then, the aspects related to various nanomaterials-based supramolecular programmable designs (organic- and inorganic-based materials), as well as physical approaches (light- and ultrasound-based therapies), are discussed, highlighting the unsolved issues and future advancements. Finally, we summarize the review with interesting perspectives and future trends, exploring further opportunities to overcome MDR.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias/tratamento farmacológico , Preparações Farmacêuticas
9.
Environ Sci Pollut Res Int ; 29(4): 6093-6102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34431054

RESUMO

Biostimulant application is an effective strategy to enhance soil fertility and plant growth. However, its comprehensive impacts on nitrogen (N) uptake and reactive N (Nr) losses via leaching, ammonia (NH3) volatilization, and nitrous oxide (N2O) emission from plastic-shed greenhouse vegetable system are still little known. Therefore, a field experiment was conducted with cauliflower-tomato growth rotation (from September 6, 2018, to July 17, 2019) receiving three biostimulants, i.e., humic acid (HA), algae extract (AE), and chitosan (CT), as well as a control without stimulant. The cumulative Nr losses over the cauliflower-tomato growth cycle via leaching, NH3 volatilization, and N2O emission were 104-175 kg N ha-1, 2.32-3.85 kg N ha-1, and 0.70-0.85 kg N ha-1, respectively. Biostimulant application significantly (P < 0.05) retarded the total N leaching by 17-44% in tomato season, while suppressed the NH3 volatilization by 18-38% in cauliflower season. Overall, AE showed the best inhibition efficiency on Nr losses by significantly (P < 0.05) decreasing total N leaching and NH3 volatilization by 36-44% and 38-52% in both vegetable seasons, compare to the control. However, all three biostimulants stimulated the N2O emission under both vegetable cycles. Interestingly, all biostimulant-added treatments promote the cauliflower and tomato yield, particularly following the HA and AE amendments, which bring local farmers approximately 4,384-10,035 yuan RMB ha-1 more income. Enhanced yield under biostimulant treatments was due to higher N uptake capacity and enhanced root morphology. In summary, biostimulants have a contrasting influence on three major Nr lost pathways in greenhouse vegetable production. We recommend that AE is the most optimal biostimulant as it increases vegetable yield and decreases total N leaching and NH3 volatilization while not dramatically increase the N2O emission.


Assuntos
Nitrogênio , Solo , Agricultura , Amônia/análise , Fertilizantes/análise , Nitrogênio/análise , Óxido Nitroso/análise , Plásticos , Verduras , Volatilização
10.
Foods ; 12(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613362

RESUMO

Compared with spring tea, summer tea has the advantages of economy and quantity. However, research on the aroma characteristics of summer tea is currently limited. In this study, summer fresh tea leaves (castanopsis. sinensis, cv. Fuliangzhong) (FTLs) were processed intoblack tea (BT) and green tea (GT). The changes in the volatile compounds during the tea processing were quantified using gas chromatography-ion mobility spectrometry (GC-IMS) and head space-solid phase micro-extraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), and then analyzed on the basis of relative odor activity value (ROAV). Results showed low amounts of flavor compounds, such as linalool oxides, geraniol, and sulcatone, were found in FTLs, but after processing, high amounts of the same in BT and GT. Summer BT and GT contained characteristic compounds similar to spring tea, including linalool, geraniol, (E,E)-2,4-decdienal, ß-ionone, methyl salicylate, geranyl acetone, and decanal. All these compounds have high content and ROAV values, which give the same flavor to summer teas as spring tea. This study confirmed that summer fresh tea leaves were suitable to produce black and green tea with good flavor. Monitoring changes in aroma compounds by GC-IMS coupled with GC-MS, the quality of summer tea is expected to be promoted towards the quality of spring tea by improving processing methods for valuable-tea production.

11.
Antiviral Res ; 195: 105193, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34687820

RESUMO

Transient receptor potential mucolipin 2 and 3 (TRPML2 and TRPML3), as key channels in the endosomal-lysosomal system, are associated with many different cellular processes, including ion release, membrane trafficking and autophagy. In particular, they can also facilitate viral entry into host cells and enhance viral infection. We previously identified that two selective TRPML agonists, ML-SA1 and SN-2, that showed antiviral activities against dengue virus type 2 (DENV2) and Zika virus (ZIKV) in vitro, but their antiviral mechanisms are still elusive. Here, we reported that ML-SA1 could inhibit DENV2 replication by downregulating the expression of both TRPML2 and TRPML3, while the other TRPML activator, SN-2, suppressed DENV2 infection by reducing only TRPML3 expression. Consistently, the channel activities of both TRPML2 and TRPML3 were also found to be associated with the antiviral activity of ML-SA1 on DENV2 and ZIKV, but SN-2 relied only on TRPML3 channel activity. Further mechanistic experiments revealed that ML-SA1 and SN-2 decreased the expression of the late endosomal marker Rab7, dependent on TRPML2 and TRPML3, indicating that these two compounds likely inhibit viral infection by promoting vesicular trafficking from late endosomes to lysosomes and then accelerating lysosomal degradation of the virus. As expected, neither ML-SA1 nor SN-2 inhibited herpes simplex virus type I (HSV-1), whose entry is independent of the endolysosomal network. Together, our work reveals the antiviral mechanisms of ML-SA1 and SN-2 in targeting TRPML channels, possibly leading to the discovery of new drug candidates to inhibit endocytosed viruses.


Assuntos
Antivirais/farmacologia , Ftalimidas/farmacologia , Quinolinas/farmacologia , Canais de Potencial de Receptor Transitório/agonistas , Zika virus/efeitos dos fármacos , Células A549 , Animais , Autofagia , Chlorocebus aethiops , Endossomos/enzimologia , Endossomos/metabolismo , Humanos , Lisossomos/enzimologia , Lisossomos/metabolismo , Células Vero , Infecção por Zika virus/virologia
12.
Int J Biol Sci ; 17(9): 2348-2355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239361

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has led to more than 150 million infections and about 3.1 million deaths up to date. Currently, drugs screened are urgently aiming to block the infection of SARS-CoV-2. Here, we explored the interaction networks of kinase and COVID-19 crosstalk, and identified phosphoinositide 3-kinase (PI3K)/AKT pathway as the most important kinase signal pathway involving COVID-19. Further, we found a PI3K/AKT signal pathway inhibitor capivasertib restricted the entry of SARS-CoV-2 into cells under non-cytotoxic concentrations. Lastly, the signal axis PI3K/AKT/FYVE finger-containing phosphoinositide kinase (PIKfyve)/PtdIns(3,5)P2 was revealed to play a key role during the cellular entry of viruses including SARS-CoV-2, possibly providing potential antiviral targets. Altogether, our study suggests that the PI3K/AKT kinase inhibitor drugs may be a promising anti-SARS-CoV-2 strategy for clinical application, especially for managing cancer patients with COVID-19 in the pandemic era.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , COVID-19/enzimologia , Chlorocebus aethiops , Simulação por Computador , Humanos , Neoplasias/enzimologia , Neoplasias/mortalidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptor Cross-Talk , Células Vero
13.
Sci Rep ; 10(1): 17975, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087812

RESUMO

The high coercivity of Nd-Fe-B magnets can also be obtained in the Ce-Fe-B magnets fabricated via the dual-main-phase (DMP) method in which the high abundance Ce was used to substitute Nd(Pr). The inhomogeneous distributions of the matrix grains in the DMP magnet play a key role in the enhanced magnetic performance. Compared with the single-phase magnet, more grain boundary phases encapsulating the matrix 2:14:1 grain are formed in the DMP magnet, which reduce the exchange coupling between adjacent magnetic grains. The switching field distribution and the interaction field distribution of the Ce-Fe-B magnets were determined by the first-order-reversal curves (FORC). The switching field peaks around 6 kOe, 11 kOe and 12 kOe in the FORC distribution indicate that three major reversal components coexist for the DMP magnet. The overlapp of the second and third switching field peaks reveals the presence of a pinning interaction within individual magnetic grains with a core-shell structure, which further improve the coercivity of the magnet.

14.
Carbohydr Polym ; 224: 115164, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472866

RESUMO

In this work, the properties of the plasticized hemicelluloses/chitosan-based edible films reinforced by cellulose nanofiber (CNF) have been evaluated. Results showed that the tensile strength (TS) of the film increased by 2.3 times with adding 5% CNF. As compared with unplasticized film, the films containing 10-40% plasticizers (glycerol, xylitol, sorbitol) showed slightly higher water vapor permeability, oxygen permeability, transparency, solubility, and lower contact angle. Among the three types of plasticized films, glycerol-plasticized films exhibited the highest tensile strain at break (TB, 7.80-18.53%), while the sorbitol-plasticized films exhibited the highest TS (23.14-48.96 MPa). However, there were no substantial differences in the three types of plasticized films except TS and TB. Overall, the films containing 20-30% glycerol with high TS (31.02-38.56 MPa) and TB (10.07-15.98%) were suitable for food-packaging applications where high mechanical strength and flexibility are required.

15.
Food Chem ; 298: 125041, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31261000

RESUMO

Edible packaging films play an important role in extending the shelf life of food products. In this work, the properties of cellulose nanofiber (CNF) reinforced hemicelluloses/chitosan-based edible films with xylooligosaccharides (XOS) have been evaluated. Results showed that the tensile strength (TS) of the film can be increased by 2.5 times with adding 5 wt% CNF. Incorporating 1.79-7.18% XOS into hemicelluloses-chitosan matrix only caused slightly higher water vapor permeability, and the composite films exhibited good hydrophobicity, thermal stability, and high transparency. The hemicelluloses/chitosan films with 1.79-5.38% XOS had higher TS (42.7-50.7 MPa) and lower oxygen permeability (OP, 4.95-5.06 cm3 µm/m2·day·kPa) than those containing 7.18% XOS. Additionally, ∼92.6% XOS in films can be released in simulated gastric fluid within 60 min. Overall, XOS (1.79-5.38%) with prebiotic properties can be added to films successfully to improve the functionality and the films were fit for food-packaging where high TS and low OP are required.


Assuntos
Celulose/química , Quitosana/química , Glucuronatos/química , Nanofibras/química , Oligossacarídeos/química , Embalagem de Alimentos/métodos , Suco Gástrico , Humanos , Microscopia Eletrônica de Varredura , Permeabilidade , Polissacarídeos/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Vapor , Resistência à Tração , Difração de Raios X
16.
Zhongguo Wei Zhong Bing Ji Jiu Yi Xue ; 20(8): 449-51, 2008 Aug.
Artigo em Zh | MEDLINE | ID: mdl-18687168

RESUMO

OBJECTIVE: To observe the effects of sedation with midazolam and propofol on anterograde amnesia in critical patients. METHODS: Sixty selected patients on mechanical ventilation in intensive care unit (ICU) were randomly divided into three subgroups (propofol, midazolam, and midazolam and propofol combination group), with 20 cases in each group. Patients who were awakened from sedation were showed with a card depicted with different colors, figures and numbers. When patients were totally conscious after weaning from mechanical ventilation,the influence of the different methods of sedation on anterograde amnesia of these critically ill patients was assessed. RESULTS: (1) 70%, 95% and 90% of patients manifested amnesia in propofol, midazolam and the combination group, respectively. All the patients recovered their memory immediately in 30 minutes after withdrawal of the sedatives. (2) When midazolam was compared with propofol and combination group, time of onset was obviously prolonged after an intravenous injection of a load dose in midazolam group [(2.7+/-1.1) minutes and (3.1+/-1.3) minutes vs. (5.1+/-2.8) minutes], also was time of extubation after regaining of consciousness [(0.7+/-0.2) hour and (1.2+/-0.6) hours vs. (2.7+/-0.3) hours, all P<0.01]. There was no significant difference between propofol group and the combination group in time of onset and extubation (both P>0.05). (3) Cost of propofol [(2,100+/-125) yuan] was 75% higher than that of midazolam [(1,200+/-112) yuan, P<0.01], but cost of sedatives in the combination group [(1,300+/-132) yuan] was similar to that in midazolam group (P>0.05). CONCLUSION: Combination of midazolam and propofol can not only ensure anterograde amnesia in critical patients, reduce drug dosage and adverse reactions, but also can help reduce the hospital expenses. This method may be a better sedation program in ICU.


Assuntos
Amnésia/induzido quimicamente , Hipnóticos e Sedativos/administração & dosagem , Midazolam/administração & dosagem , Propofol/administração & dosagem , Adolescente , Adulto , Estado Terminal , Quimioterapia Combinada , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Respiração Artificial , Adulto Jovem
17.
Carbohydr Polym ; 195: 114-119, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29804958

RESUMO

Effect of sonication on the extractability and physico-chemical properties of hemicelluloses from Eucalyptus grandis using 5% KOH solution at 50 °C for 3 h has been comparatively studied. The results showed that the yield of hemicelluloses increased from 2.6 to 19.6% as the ultrasonic time was extended from 5 to 35 min. The highest yield of hemicelluloses (95.2%) was achieved at 30 min ultrasonic time. Xylose was the dominant sugar (82.94-84.96%) of all the hemicellulosic fractions. Furthermore, the hemicelluloses obtained by ultrasound-assisted extractions had slightly lower molecular weights (74,510-66,770 g/mol) and thermal stabilities, but higher contents of xylose (83.95-84.96%). The increased yield of ultrasonically extracted hemicelluloses, which have preserved their main structural properties, confirmed the great potential of ultrasound-assisted extraction to separate hemicelluloses from Eucalyptus grandis at an industrial level.

19.
Exp Ther Med ; 14(3): 1941-1946, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28962107

RESUMO

Airway pressure release ventilation (APRV) is a ventilator mode which has demonstrated potential benefits in acute respiratory distress syndrome (ARDS) patients. We therefore sought to compare relevant pulmonary data and safety outcomes of this mode to the conventional ventilation and sustained inflation. Canines admitted after intravenous injection of oleic acid requiring mechanical ventilation were randomly divided into 3 groups (n=6), namely conventional ventilation group, low tidal volume ventilation with recruitment group (LTV+SI) and APRV group. The changes of oxygenation, ventilation, airway pressure, inflammatory reaction and hemodynamics at the basic state were observed at 0, 1, 2 and 4 h during the experiment. The levels of PaO2/FiO2 in APRV group were higher than LTV+SI group at 2 and 4 h (P<0.05). In APRV group, the PCO2 levels at 1, 2 and 4 h is much lower than LTV+SI group (P<0.05). Outcome variables showed no differences between APRV, LVT+SI and conventional mechanical ventilation for plateau airway pressure (24±1 vs. 29±3 vs. 25±4), mean arterial pressure (92.9±16.5 vs. 85.8±21.4 vs. 88.7±24.4), cardiac index (4.3±1.7 vs. 3.5±1.9 vs. 3.4±2.1), ERO2 (13.4±10.3 vs. 16.1±6.8 vs. 17.6±9.1), lac (2.5±1.7 vs. 3.1±1.6 vs. 3.9±1.9), tumor necrosis factor (TNF)-α (132±11 vs. 140±6 vs. 195±13) and matrix metalloproteinase (MMP)-9. For canines sustaining acute respiratory distress syndrome requiring mechanical ventilation, APRV can significantly improve oxygenation and keep hemodynamic stability compared with LTV+SI. The results of TNF-α and MMP-9 suggest that APRV could be as protective for ARDS as LTV with recruitment group.

20.
Artigo em Zh | MEDLINE | ID: mdl-16464390

RESUMO

OBJECTIVE: To investigate the effects of low-dose dopamine and dobutamine on renal functioning patients with nonoliguric renal failure. METHODS: Twenty-nine hemodynamically stable patients with nonoliguric renal failure were enrolled to this study group. Each patient was given 5% glucose (control), dopamine or dobutamine in random order by means of an injection pump every 4 hours. The change in urine output, fractional excretion of sodium (FeNa) and creatinine clearance rate (CCr) were determined. RESULTS: Compared with control, urine volume, FeNa, and CCr were increased significantly after administration of dopamine, or dobutamine. Compared with dobutamine, dopamine could increase the urine output and the FeNa markedly, but there was no difference in CCr increase between dopamine and dobutamine. CONCLUSION: Dopamine or dobutamine treatment could significantly increase the urine output, FeNa, and CCr in patients with nonoliguric renal failure. Dopamine infusion markedly increases urine output and the FeNa, but there is no significantly difference in CCr between dopamine and dobutamine treatment.


Assuntos
Dobutamina/administração & dosagem , Dopamina/administração & dosagem , Insuficiência Renal/tratamento farmacológico , Adulto , Idoso , Feminino , Humanos , Rim/efeitos dos fármacos , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Insuficiência Renal/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA