RESUMO
Pollen longevity is critical for plant pollination and hybrid seed production, but few studies have focused on pollen longevity. In this study, we identified an Arabidopsis thaliana gene, Protein associated with lipid droplets (PALD), which is strongly expressed in pollen and critical for the regulation of pollen longevity. PALD was expressed specifically in mature pollen grains and the pollen tube, and its expression was upregulated under dry conditions. PALD encoded a lipid droplet (LD)-associated protein and its N terminus was critical for the LD localization of PALD. The number of LDs and diameter were reduced in pollen grains of the loss-of-function PALD mutants. The viability and germination of the mature pollen grains of the pald mutants were comparable with those of the wild-type, but after the pollen grains were stored under dry conditions, pollen germination and male transmission of the mutant were compromised compared with those of the wild-type. Our study suggests that PALD was required for the maintenance of LD quality in mature pollen grains and regulation of pollen longevity.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Gotículas Lipídicas/metabolismo , Longevidade , Pólen/fisiologia , Tubo Polínico/metabolismoRESUMO
The butterfly-like tetranuclear cobalt cluster based 3D MOF [Me2NH2][Co2(bptc)(µ3-OH)(H2O)2] (1) underwent a reversible thermally triggered single-crystal-to-single-crystal transformation via Co-Owater weakened intermediate 1a to produce a partly dehydrated phase [Me2NH2][Co2(bptc)(µ3-OH)(H2O)] (2), which was confirmed by single-crystal X-ray diffraction, powder X-ray diffraction, thermogravimetric analysis, and IR spectroscopy. During the dehydration course, the local coordination environment of one Co(2+) ion was changed from the saturated octahedron to a coordinately unsaturated square-pyramid, accompanied by a crystal color change from red to purple. Compared with pristine hydrated 1, dehydrated 2 exhibits highly efficient and recyclable catalytic activity for cyanosilylation of carbonyl compounds with a low catalyst loading of 0.1 mol% Co at room temperature under solvent-free conditions, which due to the open Co(2+) sites as catalytically activated sites played a significant role in the heterogeneous catalytic process.