Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 116(3): 110856, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38734154

RESUMO

Temperature is one of the most important non-genetic sex differentiation factors for fish. The technique of high temperature-induced sex reversal is commonly used in Nile tilapia (Oreochromis niloticus) culture, although the molecular regulatory mechanisms involved in this process remain unclear. The brain is an essential organ for the regulation of neural signals involved in germ cell differentiation and gonad development. To investigate the regulatory roles of miRNAs-mRNAs in the conversion of female to male Nile tilapia gender under high-temperature stress, we compared RNA-Seq data from brain tissues between a control group (28 °C) and a high temperature-treated group (36 °C). The result showed that a total of 123,432,984 miRNA valid reads, 288,202,524 mRNA clean reads, 1128 miRNAs, and 32,918 mRNAs were obtained. Among them, there were 222 significant differentially expressed miRNAs (DE miRNAs) and 810 differentially expressed mRNAs (DE mRNAs) between the two groups. Eight DE miRNAs and eight DE mRNAs were randomly selected, and their expression patterns were validated by qRT-PCR. The miRNA-mRNA co-expression network demonstrated that 40 DE miRNAs targeted 136 protein-coding genes. Functional enrichment analysis demonstrated that these genes were involved in several gonadal differentiation pathways, including the oocyte meiosis signaling pathway, progesterone-mediated oocyte maturation signaling pathway, cell cycle signaling pathway and GnRH signaling pathway. Then, an interaction network was constructed for 8 miRNAs (mir-137-5p, let-7d, mir-1388-5p, mir-124-4-5p, mir-1306, mir-99, mir-130b and mir-21) and 10 mRNAs (smc1al, itpr2, mapk1, ints8, cpeb1b, bub1, fbxo5, mmp14b, cdk1 and hrasb) involved in the oocyte meiosis signaling pathway. These findings provide novel information about the mechanisms underlying miRNA-mediated sex reversal in female Nile tilapia.


Assuntos
Encéfalo , Ciclídeos , MicroRNAs , RNA Mensageiro , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Ciclídeos/crescimento & desenvolvimento , Feminino , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Diferenciação Sexual , Masculino , Temperatura Alta , Redes Reguladoras de Genes , Processos de Determinação Sexual
2.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34643219

RESUMO

Complex computation and approximate solution hinder the application of generalized linear mixed models (GLMM) into genome-wide association studies. We extended GRAMMAR to handle binary diseases by considering genomic breeding values (GBVs) estimated in advance as a known predictor in genomic logit regression, and then reduced polygenic effects by regulating downward genomic heritability to control false negative errors produced in the association tests. Using simulations and case analyses, we showed in optimizing GRAMMAR, polygenic effects and genomic controls could be evaluated using the fewer sampling markers, which extremely simplified GLMM-based association analysis in large-scale data. Further, joint association analysis for quantitative trait nucleotide (QTN) candidates chosen by multiple testing offered significant improved statistical power to detect QTNs over existing methods.


Assuntos
Estudo de Associação Genômica Ampla , Modelos Genéticos , Genoma , Estudo de Associação Genômica Ampla/métodos , Genômica , Herança Multifatorial , Polimorfismo de Nucleotídeo Único
3.
Fish Shellfish Immunol ; 154: 109931, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343063

RESUMO

Hypoxic stress, triggered by a multitude of factors, has inflicted significant economic repercussions on the aquaculture of Eriocheir sinensis. In this research, we sequenced a collective of 60 samples from both hypoxia-sensitive and hypoxia-resistant groups utilizing streamlined genome sequencing techniques. Subsequently, we delved into population evolution, scrutinized the selective sweep within these populations, and performed a genome-wide association study (GWAS) focused on the hypoxia tolerance traits within the population, all through the lens of SNPs molecular markers. This comprehensive analysis aimed to uncover the SNPs and pinpoint the pertinent candidate genes that influence the hypoxia tolerance capabilities of E. sinensis. The selective sweep analysis revealed that genes harboring potential genetic variations within the two populations were predominantly enriched in areas such as signaling molecules and interactions, energy metabolism, glycolipid metabolism, and immune response. In the genome-wide association study focusing on hypoxia tolerance traits, we identified four SNPs significantly associated with hypoxia resistance. Furthermore, one potential candidate gene, Dscam2, which is believed to influence hypoxia tolerance, was discovered within a 50 kb vicinity of these SNPs. These identified SNPs can serve as molecular markers for screening hypoxia tolerance, offering valuable insights for the genetic improvement of E. sinensis.

4.
Environ Res ; 262(Pt 2): 119956, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39255905

RESUMO

In the context of global warming, the accelerated evaporation of seawater will lead to a continuous expansion of saline-alkali land area. As an important economic freshwater crustacean, investigation on the mechanism of damage to Eriocheir sinensis (E. sinensis) under saline-alkali environment will provide a valuable precedent for understanding the detrimental effect of climate change on crustaceans. In this study, histopathological analysis and integrative omics analysis were employed to explore the injury mechanism on the cerebral nervous system of E. sinensis exposure to saline-alkali stress. Our findings revealed that under this stress E. sinensis exhibited behavioral disorders and damage to cerebral neurosecretory cells and key organelles. Additionally, several pathways related to detoxification metabolism, neurotransmitter synthesis, and antioxidant defense were significantly down-regulated. Collectively, these results show, for the first time, that saline-alkali stress can induce neurodegenerative disease-like symptoms in E. sinensis, and provide critical information for understanding the harmful effects of saline-alkali environments.

5.
Fish Shellfish Immunol ; 139: 108909, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37353064

RESUMO

The survival and growth of fish are significantly impacted by a hypoxic environment (low dissolved oxygen). In this study, we compared tissue structure, physiological changes, and mRNA/miRNA transcriptome, in gills of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) between the hypoxic group (DO: 0.55 mg/L, HG) and the control group (DO: 5 mg/L, CG). The results showed that the gill filaments in the hypoxic group showed curling, engorgement, and apoptotic cells increased, and that exposure for 96 h resulted in a reduction in the antioxidant capacity. We constructed and sequenced miRNA and mRNA libraries from gill tissues of GIFT at 96 h of hypoxia stress. Between the HG and CG, a total of 14 differentially expressed (DE) miRNAs and 1557 DE genes were obtained. GO and KEGG enrichment showed that DE genes were mainly enriched in immune and metabolic pathways such as natural killer cell mediated cytotoxicity, steroid biosynthesis, primary immunodeficiency, and synthesis and degradation of ketone bodies. Based on the results of mRNA sequencing and screening for miRNA-mRNA pairs, we selected and verified six DE miRNAs and their probable target genes. The sequencing results were consistent with the qRT-PCR validation results. The result showed that under hypoxia stress, the innate immune response was up-regulated, and the adaptive immune response was down-regulated in the gill of GIFT. The synthesis of cholesterol in gill cells is reduced, which is conducive to the absorption of solvent oxygen. These findings offer fresh information about the processes of fish adaptation to hypoxic stress.


Assuntos
Ciclídeos , Doenças Metabólicas , MicroRNAs , Tilápia , Animais , Tilápia/metabolismo , Transcriptoma , Brânquias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia/genética , Hipóxia/veterinária , Oxigênio/metabolismo , RNA Mensageiro/metabolismo
6.
Environ Res ; 220: 115133, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563984

RESUMO

Gut microbiota and their metabolites are increasingly recognized for their crucial role in regulating the health and growth of the host. The mechanism by which the gut microbiome affects the growth rate of fish (Cyprinus carpio) in the rice-fish coculture system, however, remains unclear. In this study, the gut contents of the fast-growing and slow-growing (FG and SG) carp were collected from the rice-fish coculture system for both the fish gut microbiome and metabolome analyses. High throughput 16 S rRNA gene sequencing showed that the overall gut microbiota of FG group was distinct from that of SG group. For example, the cyanobacteria were highly enriched in the guts of SG carp (18.61%), in contrast, they only represented a minor fraction of gut microbiota for FG group (<0.20%). The liquid chromatography-mass spectrometry (LC-MS)-based metabolomics analysis revealed that 191 identified metabolites mostly located in 18 KEGG pathways were differentially present between the two groups, of which more than 50% of these metabolites were involved in lipid and amino acids metabolism. Compared with the FG group, the gut microbiota of SG group significantly enriched the metabolic pathways involved in the steroid (hormone) biosynthesis, whereas reducing those associated with beta-alanine metabolism, biosynthesis of unsaturated fatty acids and bile secretion. The enrichment and depletion of these metabolic pathways resulted in an increase in steroid metabolites and a decrease in the concentration of spermidine, which may have a major impact on the growth rate of carp. The metabolome results were further supported by the predicated KEGG functions of the gut microbiomes of the two groups, pointing out that the gut microbiota could substantially affect the growth of fish via their unique metabolic functions. Together, our integrated fish gut microbiome and metabolome analysis has substantial implications for the development of engineered microbiome technologies in aquaculture.


Assuntos
Carpas , Microbioma Gastrointestinal , Microbiota , Animais , Metaboloma , Microbiota/genética , Metabolômica/métodos , Esteroides , Hormônios , RNA Ribossômico 16S/genética
7.
Ecotoxicol Environ Saf ; 267: 115661, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948941

RESUMO

With the intensifying climate warming, blue-green algae blooms have become more frequent and severe, releasing environmental hazards such as microcystin that pose potential threats to human and animal health. Autophagy has been shown to play a crucial role in regulating immune responses induced by environmental hazards, enabling cells to adapt to stress and protect against damage. Although microcystin-LR (MC-LR) has been identified to affect autophagy in mammalian, its impact on aquatic animals has been poorly studied. To investigate the toxicological effects of MC-LR in aquatic ecosystems, we constructed a microRNA profile of acute MC-LR stress in the hepatopancreas of the Chinese mitten crab. Interestingly, we found the MC-LR exposure activated autophagy in the hepatopancreas based on the following evidence. Specifically, mRNA expression level of ATG7, Beclin1 and Gabarap was significantly up-regulated, autophagy regulatory pathways were significantly enriched, and numerous autolysosomes and autophagosomes were observed. Additionally, we found that miR-282-5p and its target gene PIK3R1 played important regulatory roles in autophagy by in vivo and in vitro experiments. Overexpression of miR-282-5p mimicked MC-LR-induced autophagy by inhibiting PIK3R1 expression, while miR-282-5p silencing inhibited autophagy by promoting PIK3R1 expression. Altogether, our findings suggest that MC-LR increases miR-282-5p, which then targets inhibition of PIK3R1 to stimulate autophagy. This study focused on the stress response regulatory mechanisms of juvenile crabs to toxic pollutants in water, offering a potential target for alleviating the toxicity of MC-LR. These findings lay a foundation for reducing the toxicity of MC-LR and environmental hazards in organisms.


Assuntos
MicroRNAs , Microcistinas , Animais , Humanos , Microcistinas/toxicidade , Hepatopâncreas/metabolismo , Ecossistema , Fatores de Transcrição , MicroRNAs/genética , MicroRNAs/metabolismo , Autofagia , Mamíferos/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase
8.
Ecotoxicol Environ Saf ; 268: 115684, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976935

RESUMO

The extensive use of carbamate pesticides has led to a range of environmental and health problems, such as surface and groundwater contamination, and endocrine disorders in organisms. In this study, we focused on examining the effects of toxic exposure to the carbamate pesticide methomyl on the hatching, morphology, immunity and developmental gene expression levels in zebrafish embryos. Four concentrations of methomyl (0, 2, 20, and 200 µg/L) were administered to zebrafish embryos for a period of 96 h. The study found that exposure to methomyl accelerated the hatching process of zebrafish embryos, with the strongest effect recorded at the concentration of 2 µg/L. Methomyl exposure also trigged significantly reductions in heart rate and caused abnormalities in larvae morphology, and it also stimulated the synthesis and release of several inflammatory factors such as IL-1ß, IL-6, TNF-α and INF-α, lowered the IgM contents, ultimately enhancing inflammatory response and interfering with immune function. All of these showed the significant effects on exposure time, concentration and their interaction (Time × Concentration). Furthermore, the body length of zebrafish exposed to methomyl for 96 h was significantly shorter, particularly at higher concentrations (200 µg/L). Methomyl also affected the expression levels of genes associated with development (down-regulated igf1, bmp2b, vasa, dazl and piwi genes), demonstrating strong developmental toxicity and disruption of the endocrine system, with the most observed at the concentration of 200 µg/L and 96 h exposure to methomyl. The results of this study provide valuable reference information on the potential damage of methomyl concentrations in the environment on fish embryo development, while also supplementing present research on the immunotoxicity of methomyl.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Metomil/metabolismo , Metomil/farmacologia , Embrião não Mamífero , Sistema Endócrino , Praguicidas/metabolismo , Carbamatos/metabolismo , Larva , Poluentes Químicos da Água/metabolismo
9.
BMC Genomics ; 23(1): 526, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858854

RESUMO

BACKGROUND: In aquatic environments, pH, salinity, and ammonia concentration are extremely important for aquatic animals. NHE is a two-way ion exchange carrier protein, which can transport Na+ into cells and exchange out H+, and also plays key roles in regulating intracellular pH, osmotic pressure, and ammonia concentration. RESULTS: In the present study, ten NHEs, the entire NHE gene family, were identified from Coilia nasus genome and systemically analyzed via phylogenetic, structural, and synteny analysis. Different expression patterns of C. nasus NHEs in multiple tissues indicated that expression profiles of NHE genes displayed tissue-specific. Expression patterns of C. nasus NHEs were related to ammonia excretion during multiple embryonic development stages. To explore the potential functions on salinity challenge and ammonia stress, expression levels of ten NHEs were detected in C. nasus gills under hypotonic stress, hypertonic stress, and ammonia stress. Expression levels of all NHEs were upregulated during hypotonic stress, while they were downregulated during hypertonic stress. NHE2 and NHE3 displayed higher expression levels in C. nasus larvae and juvenile gills under ammonia stress. CONCLUSIONS: Our study revealed that NHE genes played distinct roles in embryonic development, salinity stress, and ammonia exposure. Syntenic analysis showed significant difference between stenohaline fish and euryhaline fishes. Our findings will provide insight into effects of C. nasus NHE gene family on ion transport and ammonia tolerance and be beneficial for healthy aquaculture of C. nasus.


Assuntos
Amônia , Salinidade , Amônia/metabolismo , Animais , Proteínas de Peixes/genética , Peixes/genética , Filogenia , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
10.
Fish Shellfish Immunol ; 127: 166-175, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716971

RESUMO

Transport stress poses a threat to most teleost fish in production, causing mass losses to the aquaculture industry. Fish gills are a mucosa-associated lymphoid tissue in direct contact with water, and they represent an ideal tissue type to study mechanisms of transport stress. In this study, hybrid yellow catfish (Tachysurus fulvidraco ♀ × Pseudobagrus vachellii ♂) were exposed to simulated transport stress for 16 h and then allowed to recover for 96 h. Gill tissues and blood samples were collected at 0 h, 2 h, 4 h, 8 h, and 16 h of transport stress and after 96 h of recovery, as well as from fish in a control group at the same sampling times. The activities of alkaline phosphatase, acid phosphatase, and superoxide dismutase and the total antioxidant capacity first increased and then decreased during the 16 h transport treatment. Exposure to 16 h of transport stress resulted in decreased serum triglyceride and total cholesterol contents, increased serum glucose content, increased activities of alanine aminotransferase and aspartate transaminase, and more mucus cells, compared with the control group. Transcriptome analysis revealed differential expression of 1525 genes (803 down-regulated and 722 up-regulated) between the control and 16 h transportation groups. Functional analyses revealed that the differentially expressed genes were enriched in immune response, signal transduction, and energy metabolism pathways. We found that tlr5, tnfɑ, hsp90ɑ, il-1ß, map2k4, il12ba were clearly up-regulated and arrdc2, syngr1a were clearly down-regulated following 8 h and/or 16 h simulated transport after qRT-PCR validation. These findings suggested that Toll- and NOD-like receptor signaling pathways potentially mediate transport stress. Transport stress altered innate immunity responses and energy use in the gill tissues of hybrid yellow catfish. After 96 h of recovery, only alanine aminotransferase and alkaline phosphatase activities and the number of mucus cells had returned to control levels. We speculate that for juvenile yellow catfish to recover to a normal state, a recovery period of more than 96 h is required after 16 h of transportation. These results provide new perspectives on the immune response of yellow catfish under transport stress and theoretical support for future optimization of their transportation.


Assuntos
Peixes-Gato , Alanina Transaminase/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Contagem de Células , Proteínas de Peixes , Brânquias/metabolismo , Imunidade Inata/genética , Muco/metabolismo , Transdução de Sinais
11.
Fish Shellfish Immunol ; 120: 458-469, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34929307

RESUMO

This study aimed to investigate the effects of dietary tea tree oil (TTO) on the performance, intestinal antioxidant capacity, and non-specific immunity after ammonia nitrogen stress in Macrobrachium rosenbergii. Six experimental diets were formulated with 0, 25, 50, 100, 200, 400 mg/kg TTO, respectively. A total of 900 prawns (average initial weight, 0.39 ± 0.01 g) were randomly assigned to 6 groups in triplicate in 18 tanks. After an 8-week feeding trial, 20 prawns from each tank were changed with 20 mg/L ammonia stress for 24 h. The results showed that 100 mg/kg TTO significantly increased prawns performance and survival rate compared with the control group. Moreover, 100 and 200 mg/kg TTO significantly improved intestinal antioxidant capabilities by increasing SOD enzyme activities and decreasing MDA levels. In addition, the prawns fed with 100 mg/kg TTO diet showed the highest survival rate under ammonia stress. After ammonia stress, the group of 100 mg/kg TTO significantly improved antioxidant capacity by increasing hemolymph respiratory burst activity, as well as intestinal anti-superoxide anion activity and SOD. Coincidentally, 100 mg/kg TTO significantly upregulated the intestinal relative expression of antioxidant-related genes (peroxiredoxin-5). Further, it was found that 100 mg/kg TTO activated the toll-dorsal pathway in prawns, which performed the similar function as the classic NF-κB pathway by upregulating the TNF-α and IL-1. Finally, 100 mg/kg TTO increased the levels of iNOS activities and NO contents after ammonia stress and enhanced non-specific immunity. The results indicated that 100 mg/kg TTO could significantly improve the M. rosenbergii performance, antioxidant capacity and ammonia stress resistance. We suggested that the mechanisms may be attributed to that TTO enhanced the antioxidant capacity and non-specific immunity of M. rosenbergii via the NF-κB signal pathway.


Assuntos
Amônia/toxicidade , Imunidade Inata , Palaemonidae , Óleo de Melaleuca , Animais , Antioxidantes/metabolismo , Dieta/veterinária , NF-kappa B , Palaemonidae/imunologia , Superóxido Dismutase
12.
Ecotoxicol Environ Saf ; 238: 113528, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35500400

RESUMO

Microcystin-LR (MC-LR), the toxic substance of cyanobacteria secondary metabolism, widely exists in water environments and poses great risks to living organisms. Some toxicological assessments of MC-LR have performed at physiological and biochemical levels. However, plenty of blanks about the potential mechanism in aquatic crustacean remains. In this study, we firstly assessed the exposure toxicity of MC-LR to juvenile E. sinensis and clarified that the 96 h LD50 of MC-LR was 73.23 µg/kg. Then, hepatopancreas transcriptome profiles of MC-LR stressed crabs were constructed at 6 h post-injection and 37 differential expressed genes (DEGs) were identified. These DEGs were enriched in cytoskeleton, peroxisome and apoptosis pathways. To further reveal the toxicity of MC-LR, oxidative stress parameters (SOD, CAT, GSH-px and MDA), apoptosis genes (caspase 3, bcl-2 and bax) and apoptotic cells were detected. Significant accumulated MDA and rise-fall enzyme activities verified the oxidative stress caused by MC-LR. It is noteworthy that quantitative real-time PCR and TUNEL assay indicated that MC-LR stress-induced apoptosis via the mitochondrial pathway. Interestingly, activator protein-1 may play a crucial role in mediating the hepatotoxicity of MC-LR by regulating apoptosis and oxidative stress. Taken together, our study investigated the toxic effects and the potential molecular mechanisms of MC-LR on juvenile E. sinensis. It provided useful data for exploring the toxicity of MC-LR to aquatic crustaceans at molecular levels.


Assuntos
Braquiúros , Animais , Apoptose , Toxinas Marinhas , Microcistinas/toxicidade , Estresse Oxidativo
13.
Ecotoxicol Environ Saf ; 248: 114303, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403304

RESUMO

Zinc is an essential nutrient for life, but over-accumulation can result in toxicity. Anthropogenic activities can increase zinc concentrations in aquatic environments (e.g., to ∼0.46-1.00 mg/L), which are above the safe level of 0.1 mg/L. We investigated the behavior and physiology of zebrafish (Danio rerio) in response to environment-related exposure to zinc chloride at 0.0 (Ctrl), 1.0 (ZnCl2-low) and 1.5 (ZnCl2-high) mg/L for 6 weeks (the zinc conversion ratio of zinc chloride is ∼0.48 and the nominal (measured) values were: Ctrl, 0 (∼0.01); ZnCl2-low, 0.48 (∼0.51); ZnCl2-high, 0.72 (∼0.69) mg/L). Low-zinc exposure resulted in significantly increased locomotion and fast moving behaviors, while high-zinc exposure resulted in significantly increased aggression and freezing frequency. Single cell RNA-seq of neurons, astrocytes, and oligodendrocytes of the brain revealed expression of genes related to ion transport, neuron generation, and immunomodulation that were heterogeneously regulated by zinc exposure. Astrocyte-induced central nervous system inflammation potentially integrated neurotoxicity and behavior. Integrated analyses of brain and hepatic transcriptional signatures showed that genes (and pathways) dysregulated by zinc were associated with sensory functions, circadian rhythm, glucose and lipid metabolism, and amyloid ß-protein clearance. Our results showed that environment-related zinc contamination can be heterogeneously toxic to brain cells and can disturb coordination of brain-liver physiology. This may disrupt neurobehavior and cause a neurodegeneration-like syndrome in adult zebrafish.


Assuntos
Transtornos Cronobiológicos , Peixe-Zebra , Animais , Zinco/toxicidade , Peptídeos beta-Amiloides , Encéfalo , Agressão , Fígado
14.
Genomics ; 113(1 Pt 1): 20-28, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271329

RESUMO

Cyprinus carpio is considered an alternative vertebrate fish model to zebrafish. However, systemic times-series research on the lncRNAs and mRNAs during early development of C. carpio has not been reported yet. This study provides the first long non-coding RNA (lncRNA)-mRNA expression profiles during six main early development stages (2 h post-fertilization hpf, 6 hpf, 12 hpf, 20 hpf, 64 hpf and 1 day post-hatching). A total of 51,979 lncRNAs were identified. We screened the top 10 abundance lncRNAs and mRNAs and stage-specific lncRNAs and mRNAs (specificity measure SPM > 0.9). We identified significant differentially expressed lncRNAs and mRNAs (|log2 (fold change)| ≥ 1 and false discovery rate FDR of <0.05). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified numerous signaling pathways. Additionally, the lncRNA-mRNA co-regulated network analysis of two lncRNAs (lncrps25 and malat1) and two mRNAs (mitf and troponin T) were investigated. Our results provide new insight into the role of lncRNAs and mRNAs, and would advance the understanding of lncRNA-mediated mechanisms in early development of fish.


Assuntos
Carpas/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Animais , Carpas/embriologia , Carpas/metabolismo , Redes Reguladoras de Genes , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo
15.
Genomics ; 113(1 Pt 2): 1207-1220, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33309769

RESUMO

Fatty liver disease is common in cultured yellow catfish as a result of high fat contents in feeds. However, little is known about the mechanism by which the excessive deposition of liver fat causes fatty liver disease. Hybrid yellow catfish (Pelteobagrus fulvidraco♀ × P. vachelli♂) were fed a high-fat diet (HFD) or a normal-fat diet (NFD) for 60 days. Compared with the NFD group, the HFD group showed lower growth performance, higher hepatosomatic and viscerosomatic indexes, increased hepatic triglyceride and cholesterol contents, and more and larger lipid droplets in liver tissue. Whole transcriptome mRNA libraries and microRNA libraries from fish in the NFD and HFD groups were constructed by high-throughput sequencing. Twelve miRNAs were differentially expressed (DE) between the HFD and NFD groups. Seven negatively correlated DE miRNA-DE mRNA pairs were selected, and the expression patterns of both were confirmed using qRT-PCR. Hybrid yellow catfish showed mediated oxidative degradation of liver glucose and fatty acid peroxidation, regulation of antioxidant enzyme activity, and various immune and inflammatory responses to fat deposition and stress. These findings have important biological significance for protecting the liver against stress, as well as economic significance for establishing healthy aquaculture conditions.


Assuntos
Peixes-Gato/genética , Dieta Hiperlipídica/efeitos adversos , Redes Reguladoras de Genes , Fígado/metabolismo , Transcriptoma , Animais , Peixes-Gato/metabolismo , Peixes-Gato/fisiologia , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Glucose/genética , Glucose/metabolismo , Hibridização Genética , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Genomics ; 113(4): 2547-2560, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34029696

RESUMO

Water quality parameter dynamics, gut, sediment and water bacteria communities were studied to understand the environmental influence on the gut microbial community of a new strain of Huanghe common carp. A total of 3,384,078 raw tags and 5105 OTUs were obtained for the gut, water and sediment bacteria. The water quality had a stronger influence on the water bacteria community than gut and sediment bacteria communities. The ambient water quality parameters also significantly influenced the water and sediment bacteria communities. Comparing the gut, sediment, and water microbial communities, a relationship was found among them. However, gut bacteria were more closely related to sediment bacterial communities than to water bacteria communities. The results showed that the top three bacterial taxa were identical in gut and sediment samples in the early days of rearing. Interestingly, bacterial communities in the carp gut, water, and sediment had different adaptabilities to variations in environmental factors.


Assuntos
Carpas , Microbiota , Agricultura , Animais , Bactérias/genética , Lagoas , RNA Ribossômico 16S/genética
17.
J Fish Biol ; 100(4): 958-969, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35229303

RESUMO

Anisakidae nematode larvae is one of the most common parasites in wild anadromous Coilia nasus. This study aims to explore the mechanism of the C. nasus immune response to the parasitism of Anisakid nematode larvae. Results found that Anisakid nematode larvae parasitism caused liver injury as evidenced by histomorphology results as well as high levels of aminotransferase and aspertate aminotransferase. Furthermore, Anisakid nematode larvae parasitism induced an immune response in the host, which was characterized by the elevated populations of macrophages and neutrophils in the liver and head-kidney in the Anisakidae-infected group compared to the noninfected group. The expression of immunoglobulin IgM and IgD in the liver and head-kidney was also increased in the Anisakidae-infected group. The Anisakidae-infected group showed higher activity of antioxidant enzymes catalase and superoxide dismutase, which indicates severe oxidative stress, and increased production of pro-inflammatory cytokines, TNF-α, IL-6 as well as MCP-1 in the liver compared with the noninfected group. As a result of inflammation, livers of hosts in the Anisakidae-infected group showed fibrosis, and elevated expression of associated proteins including α-smooth muscle actin, fibronectin, collagen type I and type III compared with the noninfected group. We demonstrated that Anisakid nematode larvae parasitism results in injury and fibrosis in the liver, and triggers immune cell infiltration and inflammation in the liver and head-kidney of C. nasus. Altogether, the results provide a foundation for building an interaction between parasite and host, and will contribute to C. nasus population and fishery resource protection.


Assuntos
Proteínas de Peixes , Peixes , Animais , Fibrose , Proteínas de Peixes/metabolismo , Peixes/fisiologia , Imunidade , Inflamação/metabolismo , Larva/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Transaminases/metabolismo
18.
Molecules ; 27(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35956873

RESUMO

Aquaculture environment plays important roles in regulating the growth, morphology, nutrition, and flavor of aquatic products. The present study investigated growth, morphology, nutrition, and flavor formation in largemouth bass (Micropterus salmoides) cultured in the ponds with (EM group) and without (M group) the submerged macrophytes (Elodea nuttallii). Fish in the EM group showed a significantly greater body length, higher growth rate, and lower hepatosomatic index than those in the M group (p< 0.05). Moreover, compared with fish in the M group, those in the EM group showed improved muscle quality with significantly elevated levels of crude protein, total free and hydrolysable amino acids, and polyunsaturated fatty acids (p < 0.05). Specifically, certain amino acids related to flavor (Glu, Asp, Ala, and Arg) and valuable fatty acids (C18:2, C18:3n3, C20:3n3, and C22:6) were more abundant in the EM group (p < 0.05). In addition, the levels of 19 volatile (p < 0.05) were significantly higher in the EM group than in the M group. Therefore, E. nuttallii significantly improved growth, morphological traits, nutritional components, and characteristic flavor in largemouth bass, indicating the superior nutritional value and palatability of fish cultured with submerged macrophytes.


Assuntos
Bass , Aminoácidos/metabolismo , Animais , Bass/metabolismo , Valor Nutritivo , Fenótipo
19.
Aquac Nutr ; 2022: 4034922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36860443

RESUMO

This 56-day research aimed to evaluate the recommended histidine requirement and the influence of dietary histidine levels on the protein and lipid metabolism of juvenile largemouth bass (Mieropterus salmoides). The initial weight of the largemouth bass was 12.33 ± 0.01 g, which was fed with six graded levels of histidine. The results showed that appropriate dietary histidine had a positive effect on growth, with a higher specific growth rate, final weight, weight gain rate, protein efficiency rate, and a lower feed conversion rate and feed intake rate being observed in 1.08-1.48% dietary histidine groups. Furthermore, the mRNA levels of GH, IGF-1, TOR, and S6 showed an increasing trend first and then declined, similar to the trend of the growth and protein content of the whole body composition. Meanwhile, dietary histidine levels could be sensed by the AAR signaling pathway, representing as downregulation of core genes of AAR signaling pathway with the increased dietary histidine levels, including GCN2, eIF2α, CHOP, ATF4, and REDD1. In addition, increased dietary histidine levels decreased the lipid content of the whole body and the liver by upregulating the mRNA levels of core genes of the PPARα signaling pathways, including PPARα, CPT1, L-FABP, and PGC1α. However, increased dietary histidine levels downregulated the mRNA levels of core genes of the PPARγ signaling pathways such as PPARγ, FAS, ACC, SREBP1, and ELOVL2. These findings were also supported by the positive area ratio of hepatic oil red O staining and the TC content of plasma. According to the specific growth rate and feed conversion rate, the recommended histidine requirement of juvenile largemouth bass was 1.26% of the diet (2.68% of dietary protein) by regression lines calculated using a quadratic model. In general, histidine supplementation promoted protein synthesis and lipid decomposition and reduced lipid synthesis by activating the TOR, AAR, PPARα, and PPARγ signaling pathways, which provided a new perspective to solve the fatty liver problem of largemouth bass by nutritional means.

20.
Aquac Nutr ; 2022: 1245151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37162816

RESUMO

A 60-day feeding experiment was performed to evaluate the effect of dietary astaxanthin on gonad development, the antioxidant system, and its inherent mechanism in female Nile tilapia (Oreochromis niloticus). Fish were fed with diets containing astaxanthin at five levels [0 mg/kg (control), 50 mg/kg, 100 mg/kg, 150 mg/kg, and 200 mg/kg]. At the end of experiment, the group fed with 150 mg/kg astaxanthin showed significantly increased specific growth rate, feed utilization, viscerosomatic index, and hepatosomatic index compared with the control group (P < 0.05). Gonad development was stimulated in the groups fed with 100 mg/kg and 150 mg/kg astaxanthin, and their gonadosomatic index and egg diameter were significantly higher than those of the control group and the group fed with 200 mg/kg astaxanthin. The ovaries of females in the groups fed with 100 mg/kg and 150 mg/kg astaxanthin were fully developed, the eggs were gray-yellow and uniform in size, and a large number of oocytes developed to stages IV and V. The serum levels of 17 ß-estradiol, follicle-stimulating hormone, and luteinizing hormone were significantly higher in the groups fed with 100 mg/kg and 150 mg/kg astaxanthin than in the group fed with 200 mg/kg astaxanthin. Compared with the control and the other groups, the group fed with 150 mg/kg astaxanthin showed significantly higher transcript levels of genes encoding hormone receptors and higher catalase activity in ovarian tissues, lower malondialdehyde content, decreased apoptosis (reduced granulosa cell apoptosis and lower transcript levels of bax and caspase-3), and reduced follicular atresia. Gene ontology analyses revealed that cell division and the cell cycle were enriched with differentially expressed genes in the group fed with 150 mg/kg astaxanthin, compared with the control group. We concluded that dietary astaxanthin at a concentration of 150 mg/kg activates follicle development by inhibiting expression of mapk1 (involved in MAPK signaling) and increasing the expression genes involved in oocyte meiosis (chp2, ppp3ca, map2k1, and smc1a1) and progesterone-mediated oocyte maturation (igf1, plk1, and cdk1). In conclusion, female Nile tilapia fed with 150 mg/kg astaxanthin showed increased growth, reduced oxidative stress in ovarian tissue, lower levels of cell apoptosis, and improved oocyte development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA