Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(5): e1012072, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38753874

RESUMO

Cells use signaling pathways to sense and respond to their environments. The transforming growth factor-ß (TGF-ß) pathway produces context-specific responses. Here, we combined modeling and experimental analysis to study the dependence of the output of the TGF-ß pathway on the abundance of signaling molecules in the pathway. We showed that the TGF-ß pathway processes the variation of TGF-ß receptor abundance using Liebig's law of the minimum, meaning that the output-modifying factor is the signaling protein that is most limited, to determine signaling responses across cell types and in single cells. We found that the abundance of either the type I (TGFBR1) or type II (TGFBR2) TGF-ß receptor determined the responses of cancer cell lines, such that the receptor with relatively low abundance dictates the response. Furthermore, nuclear SMAD2 signaling correlated with the abundance of TGF-ß receptor in single cells depending on the relative expression levels of TGFBR1 and TGFBR2. A similar control principle could govern the heterogeneity of signaling responses in other signaling pathways.


Assuntos
Transdução de Sinais , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta/metabolismo , Humanos , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Proteína Smad2/metabolismo , Biologia Computacional , Modelos Biológicos , Linhagem Celular Tumoral , Proteínas Smad/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
2.
Mol Ther ; 32(7): 2264-2285, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702887

RESUMO

Overexpression of vesicular stomatitis virus G protein (VSV-G) elevates the secretion of EVs known as gectosomes, which contain VSV-G. Such vesicles can be engineered to deliver therapeutic macromolecules. We investigated viral glycoproteins from several viruses for their potential in gectosome production and intracellular cargo delivery. Expression of the viral glycoprotein (viral glycoprotein from the Chandipura virus [CNV-G]) from the human neurotropic pathogen Chandipura virus in 293T cells significantly augments the production of CNV-G-containing gectosomes. In comparison with VSV-G gectosomes, CNV-G gectosomes exhibit heightened selectivity toward specific cell types, including primary cells and tumor cell lines. Consistent with the differential tropism between CNV-G and VSV-G gectosomes, cellular entry of CNV-G gectosome is independent of the Low-density lipoprotein receptor, which is essential for VSV-G entry, and shows varying sensitivity to pharmacological modulators. CNV-G gectosomes efficiently deliver diverse intracellular cargos for genomic modification or responses to stimuli in vitro and in the brain of mice in vivo utilizing a split GFP and chemical-induced dimerization system. Pharmacokinetics and biodistribution analyses support CNV-G gectosomes as a versatile platform for delivering macromolecular therapeutics intracellularly.


Assuntos
Vesiculovirus , Animais , Humanos , Camundongos , Vesiculovirus/genética , Vesiculovirus/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Células HEK293 , Proteínas Virais/metabolismo , Proteínas Virais/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral
3.
Nucleic Acids Res ; 46(4): 1756-1776, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29240919

RESUMO

Histone deacetylase inhibitors (HDACIs) are known to alter gene expression by both up- and down-regulation of protein-coding genes in normal and cancer cells. However, the exact regulatory mechanisms of action remain uncharacterized. Here we investigated genome wide dose-dependent epigenetic and transcriptome changes in response to HDACI largazole in a transformed and a non-transformed cell line. Exposure to low nanomolar largazole concentrations (

Assuntos
Depsipeptídeos/farmacologia , Elementos Facilitadores Genéticos , Código das Histonas/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Tiazóis/farmacologia , Acetilação , Linhagem Celular , Linhagem Celular Transformada , Citostáticos/farmacologia , Relação Dose-Resposta a Droga , Elementos Facilitadores Genéticos/efeitos dos fármacos , Genoma , Histona Desacetilases/fisiologia , Histonas/metabolismo , Oncogenes , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo
4.
J Immunol ; 194(10): 4880-90, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25847972

RESUMO

Stringent control of inflammasome signaling pathway is important for maintaining immunological balance, yet the molecular mechanisms responsible for its tight regulation are still poorly understood. In this study, we found that the signaling pathway dependent on mitochondrial antiviral signaling protein (MAVS) was required for the optimal activation of apoptosis-associated specklike protein (ASC)-dependent inflammasome. In particular, TNFR-associated factor 3 was found to be a direct E3 ligase for ASC. Ubiquitination of ASC at Lys(174) was critical for speck formation and inflammasome activation. Deficiency in MAVS or TNFR-associated factor 3 impaired ASC ubiquitination and cytosolic aggregates formation, resulting in reduced inflammasome response upon RNA virus infection. This study has identified a previously unrecognized role of MAVS in the regulation of inflammasome signaling and provided molecular insight into the mechanisms by which ubiquitination of ASC controls inflammasome activity through the formation of ASC specks.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Reguladoras de Apoptose/imunologia , Inflamassomos/imunologia , Transdução de Sinais/imunologia , Fator 3 Associado a Receptor de TNF/imunologia , Ubiquitinação , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Immunoblotting , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Interferência de RNA , Viroses/imunologia
5.
Proc Natl Acad Sci U S A ; 111(5): E601-10, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449872

RESUMO

Resistance to antiestrogens is one of the major challenges in breast cancer treatment. Although phosphorylation of estrogen receptor α (ERα) is an important factor in endocrine resistance, the contributions of specific kinases in endocrine resistance are still not fully understood. Here, we report that an important innate immune response kinase, the IκB kinase-related TANK-binding kinase 1 (TBK1), is a crucial determinant of resistance to tamoxifen therapies. We show that TBK1 increases ERα transcriptional activity through phosphorylation modification of ERα at the Ser-305 site. Ectopic TBK1 expression impairs the responsiveness of breast cancer cells to tamoxifen. By studying the specimens from patients with breast cancer, we find a strong positive correlation of TBK1 with ERα, ERα Ser-305, and cyclin D1. Notably, patients with tumors highly expressing TBK1 respond poorly to tamoxifen treatment and show high potential for relapse. Therefore, our findings suggest that TBK1 contributes to tamoxifen resistance in breast cancer via phosphorylation modification of ERα.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Tamoxifeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Estimativa de Kaplan-Meier , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Tamoxifeno/uso terapêutico , Transcrição Gênica/efeitos dos fármacos , Resultado do Tratamento
6.
BMC Cell Biol ; 16: 6, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25886724

RESUMO

BACKGROUND: Mps1, an essential component of the mitotic checkpoint, is also an important interphase regulator and has roles in DNA damage response, cytokinesis and centrosome duplication. Mps1 predominantly resides in the cytoplasm and relocates into the nucleus at the late G2 phase. So far, the mechanism underlying the Mps1 translocation between the cytoplasm and nucleus has been unclear. RESULTS: In this work, a dynamic export process of Mps1 from the nucleus to cytoplasm in interphase was revealed- a process blocked by the Crm1 inhibitor, Leptomycin B, suggesting that export of Mps1 is Crm1 dependent. Consistent with this speculation, a direct association between Mps1 and Crm1 was found. Furthermore, a putative nuclear export sequence (pNES) motif at the N-terminal of Mps1 was identified by analyzing the motif of Mps1. This motif shows a high sequence similarity to the classic NES, a fusion of this motif with EGFP results in dramatic exclusion of the fusion protein from the nucleus. Additionally, Mps1 mutant loss of pNES integrity was shown by replacing leucine with alanine which produced a diffused subcellular distribution, compared to the wild type protein which resides predominantly in cytoplasm. CONCLUSION: Taken these findings together, it was concluded that the pNES sequence is sufficient for the Mps1 export from nucleus during interphase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Motivos de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Ácidos Graxos Insaturados/farmacologia , Células HEK293 , Humanos , Interfase , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Exportina 1
7.
J Virol ; 88(19): 11356-68, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25056901

RESUMO

UNLABELLED: Retinoic acid-inducible gene I (RIG-I) is an intracellular RNA virus sensor that induces type I interferon-mediated host-protective innate immunity against viral infection. Although cylindromatosis (CYLD) has been shown to negatively regulate innate antiviral response by removing K-63-linked polyubiquitin from RIG-I, the regulation of its expression and the underlying regulatory mechanisms are still incompletely understood. Here we show that RIG-I activity is regulated by inhibition of CYLD expression mediated by the microRNA miR-526a. We found that viral infection specifically upregulates miR-526a expression in macrophages via interferon regulatory factor (IRF)-dependent mechanisms. In turn, miR-526a positively regulates virus-triggered type I interferon (IFN-I) production, thus suppressing viral replication, the underlying mechanism of which is the enhancement of RIG-I K63-linked ubiquitination by miR-526a via suppression of the expression of CYLD. Remarkably, virus-induced miR-526a upregulation and CYLD downregulation are blocked by enterovirus 71 (EV71) 3C protein, while ectopic miR-526a expression inhibits the replication of EV71 virus. The collective results of this study suggest a novel mechanism of the regulation of RIG-I activity during RNA virus infection by miR-526a and suggest a novel mechanism for the evasion of the innate immune response controlled by EV71. IMPORTANCE: RNA virus infection upregulates the expression of miR-526a in macrophages through IRF-dependent pathways. In turn, miR-526a positively regulates virus-triggered type I IFN production and inhibits viral replication, the underlying mechanism of which is the enhancement of RIG-I K-63 ubiquitination by miR-526a via suppression of the expression of CYLD. Remarkably, virus-induced miR-526a upregulation and CYLD downregulation are blocked by enterovirus 71 (EV71) 3C protein; cells with overexpressed miR-526a were highly resistant to EV71 infection. The collective results of this study suggest a novel mechanism of the regulation of RIG-I activity during RNA virus infection by miR-526a and propose a novel mechanism for the evasion of the innate immune response controlled by EV71.


Assuntos
RNA Helicases DEAD-box/genética , Enterovirus Humano A/genética , Evasão da Resposta Imune , Imunidade Inata , MicroRNAs/genética , Proteínas Virais/genética , Proteases Virais 3C , Animais , Chlorocebus aethiops , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/imunologia , Proteína DEAD-box 58 , RNA Helicases DEAD-box/imunologia , Enzima Desubiquitinante CYLD , Cães , Enterovirus Humano A/imunologia , Regulação da Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Células Madin Darby de Rim Canino , MicroRNAs/imunologia , Poliubiquitina/genética , Poliubiquitina/imunologia , Receptores Imunológicos , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia , Células Vero , Proteínas Virais/imunologia , Replicação Viral
8.
Biochem Biophys Res Commun ; 450(4): 1690-5, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25063032

RESUMO

The spindle assembly checkpoint kinase Mps1 is highly expressed in several types of cancers, but its cellular involvement in tumorigenesis is less defined. Herein, we confirm that Mps1 is overexpressed in colon cancer tissues. Further, we find that forced expression of Mps1 in the colon cancer cell line SW480 enables cells to become resistant to both Mps1 inhibition-induced checkpoint depletion and cell death. Overexpression of Mps1 also increases genome instability in tumor cells owing to a weakened spindle assembly checkpoint. Collectively, our findings suggest that high levels of Mps1 contribute to tumorigenesis by attenuating the spindle assembly checkpoint.


Assuntos
Aneuploidia , Proteínas de Ciclo Celular/metabolismo , Neoplasias do Colo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fuso Acromático , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Regulação para Baixo , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética
9.
Biomolecules ; 14(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540668

RESUMO

The PTEN-induced kinase 1 (PINK1)-Parkin pathway plays a vital role in maintaining a healthy pool of mitochondria in higher eukaryotic cells. While the downstream components of this pathway are well understood, the upstream triggers remain less explored. In this study, we conducted an extensive analysis of inhibitors targeting various mitochondrial electron transport chain (ETC) complexes to investigate their potential as activators of the PINK1-Parkin pathway. We identified cloflucarban, an antibacterial compound, as a novel pathway activator that simultaneously inhibits mitochondrial complexes III and V, and V. RNA interference (RNAi) confirmed that the dual inhibition of these complexes activates the PINK1-Parkin pathway. Intriguingly, we discovered that albumin, specifically bovine serum albumin (BSA) and human serum albumin (HSA) commonly present in culture media, can hinder carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced pathway activation. However, cloflucarban's efficacy remains unaffected by albumin, highlighting its reliability for studying the PINK1-Parkin pathway. This study provides insights into the activation of the upstream PINK1-Parkin pathway and underscores the influence of culture conditions on research outcomes. Cloflucarban emerges as a promising tool for investigating mitochondrial quality control and neurodegenerative diseases.


Assuntos
Carbanilidas , Proteínas Quinases , Ubiquitina-Proteína Ligases , Humanos , Proteínas Quinases/metabolismo , Reprodutibilidade dos Testes , Ubiquitina-Proteína Ligases/metabolismo , Mitocôndrias/metabolismo , Albuminas/metabolismo
10.
Chemosphere ; 318: 137909, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681195

RESUMO

Toxic substances in the environment disturb the adsorption of pollutants in plants but little is known about the underlying mechanisms of these processes. This study evaluated the PAH adsorption by Phragmites australis under NAs stress. Results showed that Naphthenic acids (NAs) significantly decreased the adsorption of PAHs and had higher selectivity for type and structure. P. australis root cell growth and mitosis were significantly affected by NAs, which was accompanied by serious disturbances in mitochondrial function. The physiological evaluation showed the NAs could increase Reactive Oxygen Species (ROS) accumulation by around 16-fold and cause damage to the root cell normal redox equilibrium. The levels of three key related antioxidants, PLA, CAT and POD, decreased significantly to 35-50% under NAs stress and were dependent upon NAs concentration. Furthermore, NAs could significantly change the concentration and species of root exudates of P. ausralis. Autotoxic substances, including alcohol and amines, increased by 28.63% and 23.96, respectively. Sixteen compounds were identified and assumed as potential biomarkers. Galactonic, glyceric, and octadecanoic acid had the general effect of activating PAH in soil. The global view of the metabolic pathway suggests that NAs influenced the citric acid cycle, fatty acid synthesis, amino acid metabolism and the phenylpropanoid pathway. Detection data results indicated that the energy products cause hypoxia and oxidative stress, which are the main processes under the NAs. Furthermore, verification of these processes was fulfilled through gene expression and biomarkers quantification. Our results provide novel metabolic insights into the mechanisms of PAHs adsorption by P. australis under NAs disturbance, suggesting that monitoring NAs in phytoremediation applications is necessary.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Adsorção , Poaceae/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
11.
J Agric Food Chem ; 71(51): 20585-20601, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38101321

RESUMO

Soil salinity is an important limiting factor in agricultural production. Rhizospheric fungi can potentially enhance crop salinity tolerance, but the precise role of signaling substances is still to be systematically elucidated. A rhizospheric fungus identified as Paecilomyces vaniformisi was found to enhance the salinity tolerance of rice seedlings. In this study, a novel polysaccharide (PPL2b) was isolated from P. vaniformisi and identified as consisting of Manp, Glcp, GalpA, and Galp. In a further study, PPL2b showed significant activity in alleviating salinity stress-induced growth inhibition in rice seedlings. The results indicated that under salinity stress, PPL2b enhances seed germination, plant growth (height and biomass), and biochemical parameters (soluble sugar and protein contents). Additionally, PPL2b regulates genes such as SOS1 and SKOR to decrease K+ efflux and increase Na+ efflux. PPL2b increased the expression and activity of genes related to antioxidant enzymes and nonenzyme substances in salinity-induced oxidative stress. Further study indicated that PPL2b plays a crucial role in regulating osmotic substances, such as proline and betaine, in maintaining the osmotic balance. It also modulates plant hormones to promote rice seedling growth and enhance their tolerance to soil salinity. The variables interacted and were divided into two groups (PC1 77.39% and PC2 18.77%) based on their relative values. Therefore, these findings indicate that PPL2b from P. vaniformisi can alleviate the inhibitory effects of salinity stress on root development, osmotic adjustment, ion balance, oxidative stress balance, and growth of rice seedlings. Furthermore, it suggests that polysaccharides produced by rhizospheric fungi could be utilized to enhance crop tolerance to salinity.


Assuntos
Oryza , Paecilomyces , Plântula , Oryza/metabolismo , Salinidade , Polissacarídeos/metabolismo , Solo/química , Estresse Fisiológico
12.
J Biol Chem ; 285(49): 38730-9, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20884615

RESUMO

Mps1 is a protein kinase that regulates normal mitotic progression and the spindle checkpoint in response to spindle damage. The levels of Mps1 are relatively low in cells during interphase but elevated in mitosis or upon activation of the spindle checkpoint, although the dynamic range of Mps1 expression and the Mps1 catalytic mechanism have not been carefully characterized. Our recent structural studies of the Mps1 kinase domain revealed that the carboxyl-terminal tail region of Mps1 is unstructured, raising the question of whether this region has any functional role in Mps1 catalysis. Here we first determined the cellular abundance of Mps1 during cell cycle progression and found that Mps1 levels vary between 60,000 per cell in early G(1) and 110,000 per cell during mitosis. We studied phosphorylation of a number of Mps1 substrates in vitro and in culture cells. Unexpectedly, we found that the unstructured carboxyl-terminal region of Mps1 plays an essential role in substrate recruitment. Kinetics studies using the purified recombinant wild type and mutant kinases indicate that the carboxyl-terminal tail is largely dispensable for autophosphorylation of Mps1 but critical for trans-phosphorylation of substrates in vitro and in cultured cells. Mps1 mutant without the unstructured tail region is defective in mediating spindle assembly checkpoint activation. Our results underscore the importance of the unstructured tail region of Mps1 in kinase activation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fase G1/fisiologia , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Catálise , Proteínas de Ciclo Celular/genética , Ativação Enzimática/fisiologia , Células HeLa , Humanos , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fuso Acromático/genética
13.
J Immunol ; 183(7): 4241-8, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19734229

RESUMO

Innate immunity to viruses involves receptors such as Retinoic Acid Induced Gene-1 (RIG-I), which senses viral RNA and triggers a signaling pathway involving the outer mitochondrial membrane protein mitochondrial antiviral signaling (MAVS). Recent work has identified that NLRX1, a member of another class of innate immune receptors, sequesters MAVS away from RIG-I and thereby prevents mitochondrial antiviral immunity. In this study, we demonstrate that the proteasome PSMA7 (alpha4) subunit associates with MAVS in vivo and in vitro. Expression of PSMA7 results in a potent inhibition of RIG-1 and MAVS-mediated IFN-beta promoter activity; conversely, depletion of PSMA7 with small interference RNA enhances virus-induced type I IFN production, with consequent reduction of virus replication. Furthermore, a striking reduction in the abundance of endogenous MAVS with overexpressed PSMA7 was found and virus infection leads to transient increase in the endogenous PSMA7 protein level. Cumulatively, these results suggest that PSMA7 is a negative regulator of the MAVS-mediated innate immunity that probably serves to attenuate the establishment of an antiviral state during viral infection, highlighting the biological significance of PSMA7-MAVS association as an important cellular regulatory control.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Regulação para Baixo/imunologia , Interferon beta/antagonistas & inibidores , Proteínas Mitocondriais/antagonistas & inibidores , Complexo de Endopeptidases do Proteassoma/fisiologia , Vírus da Estomatite Vesicular Indiana/imunologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Regulação para Baixo/genética , Humanos , Imunidade Inata , Interferon beta/biossíntese , Interferon beta/fisiologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/fisiologia , Camundongos , Proteínas Mitocondriais/fisiologia , Complexo de Endopeptidases do Proteassoma/deficiência , Complexo de Endopeptidases do Proteassoma/genética , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/fisiologia , Estomatite Vesicular/imunologia , Estomatite Vesicular/virologia , Vírus da Estomatite Vesicular Indiana/crescimento & desenvolvimento
14.
BMC Biotechnol ; 10: 91, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21176167

RESUMO

BACKGROUND: Monoclonal antibodies have been employed as targeting molecules of superantigen for the preclinical treatment of a variety of tumours. However, other targeting molecules, such as tumour-related ligands or peptides, are less exploited. Here, we tested other targeting molecules by genetically fusing the third loop of transforming growth factor alpha (TGFalphaL3) to mutant staphylococcal enterotoxin A (SEAD227A). RESULTS: The resultant fusion proteins were expressed in E. coli and purified to homogeneity through a Ni-NTA affinity column. Fusion protein TGFalphaL3SEAD227A can promote splenocyte proliferation to a level comparable to recombinant SEA (rSEA) and bind to EGFR-expressing tumour cells in an EGFR-dependent way. Consistent with these observations, TGFalphaL3SEAD227A exerted an inhibitory effect on the growth of EGFR-expressing tumour cells both in vitro and in vivo. Notably, significant infiltrations of CD8+ and CD4+ T cells were detected in the tumour tissues of these C57BL/6 mice treated with TGFalphaL3SEAD227A, suggesting the involvement of T cells in this tumour-inhibitory process. CONCLUSIONS: The data here showed that TGFαL3 is capable of targeting superantigen to tumours and exerting an inhibitory effect on tumour growth, which enables TGFαL3SEAD227A to be an attractive candidate for the immunotherapy of EGFR-expressing tumours.


Assuntos
Receptores ErbB/imunologia , Imunoterapia , Melanoma Experimental/tratamento farmacológico , Superantígenos/farmacologia , Fator de Crescimento Transformador alfa/farmacologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/farmacologia , Baço/citologia , Células Tumorais Cultivadas
15.
Dev Cell ; 55(6): 784-801.e9, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33296682

RESUMO

Getting large macromolecules through the plasma membrane and endosomal barriers remains a major challenge. Here, we report a generalizable method of delivering proteins and ribonucleoproteins (RNPs) to cells in vitro and mouse liver tissue in vivo with engineered ectosomes. These ectosomes, referred to as "Gectosomes," are designed to co-encapsulate vesicular stomatitis virus G protein (VSV-G) with bioactive macromolecules via split GFP complementation. We found that this method enables active cargo loading, improves the specific activity of cargo delivery, and facilitates Gectosome purification. Experimental and mathematical modeling analyses suggest that active cargo loading reduces non-specific encapsulation of cellular proteins, particularly nucleic-acid-binding proteins. Using Gectosomes that encapsulate Cre, Ago2, and SaCas9, we demonstrate their ability to execute designed modifications of endogenous genes in cell lines in vitro and mouse liver tissue in vivo, paving the way toward applications of this technology for the treatment of a wide range of human diseases.


Assuntos
Exossomos/metabolismo , Edição de Genes/métodos , Técnicas de Transferência de Genes , Animais , Proteínas Argonautas/metabolismo , Caspase 9/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Integrases/metabolismo , Fígado/metabolismo , Glicoproteínas de Membrana/administração & dosagem , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/metabolismo
16.
J Cell Mol Med ; 13(8B): 1679-1694, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19120698

RESUMO

Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-A-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation. Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices EF and F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Ativação Enzimática , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosforilação , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases , Especificidade por Substrato
17.
Oncogene ; 38(31): 5959-5970, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31253867

RESUMO

Human epithelial cells can be infected by more than 200 types of human papilloma viruses (HPVs), and persistent HPV infections lead to cervical cancer or other deadly cancers. It has been established that mitotic progression is critical for HPV16 infection, but the underlying mechanism remains unknown. Here, we report that oncoprotein E7 of HPV16 but not HPV18 retards mitotic progression in host cell by direct binding to the C terminus of Microtubule-Associated Protein 4 (MAP4). MAP4 is a novel bona fide target of HPV16E7 protein which binds and recruits the latter to spindle microtubule in mitosis. HPV16E7 protein promotes MAP4 stability by inhibiting MAP4 phosphorylation- mediated degradation to increase the stability of microtubule polymerization and cause an extend mitotic progression. We further uncovered that Mps1 is a kinase of MAP4, and E7-MAP4 binding blocks Mps1 phosphorylation of MAP4, thereby interrupting phosphorylation-dependent MAP4 degradation. Mutations of MAP4 at T927ES928E partially abolished E7-binding capacity and rescued mitotic progression in host cells. In conclusion, our study reveals a molecular mechanism by which HPV16E7 perturbs host mitotic progression by interfering Mps1-MAP4 signaling cascade, which results in an extended infection window and may facilitate the persistent HPV16 infection.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Alphapapillomavirus/isolamento & purificação , Células HeLa , Humanos , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Fosforilação , Ligação Proteica , Ligação Viral
19.
Free Radic Biol Med ; 103: 177-187, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28017898

RESUMO

Oxidative stress contributes to the oxidative modification of cellular components, including lipids, proteins and DNA, and results in DNA damage, cell cycle arrest, cellular dysfunction and apoptosis. However, the mechanism underlying oxidative stress-induced mitotic abnormalities is not fully understood. In this study, we demonstrated that exogenous and endogenous reactive oxygen species (ROS) promoted mitotic arrest. Delayed formation and abnormal function of the mitotic spindle, which directly impeded mitosis and promoted abnormal chromosome separation, was responsible for ROS-induced mitotic arrest. As a key regulator of mitotic spindle assembly, Aurora A kinase was hyperphosphorylated in early mitosis under oxidative stress, which may disturb the function of Aurora A in mitotic spindle formation. Our findings identified a mechanism by which ROS regulate mitotic progression and indicated a potential molecular target for the treatment of oxidative stress-related diseases.


Assuntos
Aurora Quinase A/metabolismo , Pontos de Checagem do Ciclo Celular , Estresse Oxidativo , Fuso Acromático/metabolismo , Apoptose , Células HEK293 , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Células MCF-7 , Mitose , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Vitamina K 3/farmacologia
20.
Pharmacol Ther ; 164: 126-34, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27113409

RESUMO

The systemic renin-angiotensin system (RAS) has long been recognized as a critically important system in blood pressure (BP) regulation. However, extensive evidence has shown that a majority of RAS components are also present in many tissues and play indispensable roles in BP regulation. Here, we review evidence that RAS components, notably including the newly identified (pro)renin receptor (PRR), are present in the brain and are essential for the central regulation of BP. Binding of the PRR to its ligand, prorenin or renin, increases BP and promotes progression of cardiovascular diseases in an angiotensin II-dependent and -independent manner, establishing the PRR a promising antihypertensive drug target. We also review the existing PRR blockers, including handle region peptide and PRO20, and propose a rationale for blocking prorenin/PRR activation as a therapeutic approach that does not affect the actions of the PRR in vacuolar H(+)-ATPase and development. Finally, we summarize categories of currently available antihypertensive drugs and consider future perspectives.


Assuntos
Pressão Sanguínea/fisiologia , Encéfalo/metabolismo , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Angiotensina II/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Renina/metabolismo , Renina/farmacologia , Sistema Renina-Angiotensina/fisiologia , Receptor de Pró-Renina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA